已知f(x)=a
2x-
x
3,x∈(-2,2)為正常數.
(1)可以證明:定理“若a、b∈R
*,則
≥(當且僅當a=b時取等號)”推廣到三個正數時結論是正確的,試寫出推廣后的結論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數f(x)的最大值大于1,求實數a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
(3)對滿足(2)的條件的一個常數a,設x=x
1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x
1為首項的等差數列.