題目列表(包括答案和解析)
C
[解析] 依題意得+
=(
+
)[x+(1-x)]=13+
+
≥13+2
=25,當且僅當
=
,即x=
時取等號,選C.
已知函數=
.
(Ⅰ)當時,求不等式
≥3的解集;
(Ⅱ) 若≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,
=
,
當≤2時,由
≥3得
,解得
≤1;
當2<<3時,
≥3,無解;
當≥3時,由
≥3得
≥3,解得
≥8,
∴≥3的解集為{
|
≤1或
≥8};
(Ⅱ) ≤
,
當∈[1,2]時,
=
=2,
∴,有條件得
且
,即
,
故滿足條件的的取值范圍為[-3,0]
設,
.
(1)當時,求曲線
在
處的切線方程;
(2)如果存在,使得
成立,求滿足上述條件的最大整數
;
(3)如果對任意的,都有
成立,求實數
的取值范圍.
【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,
轉化
解決;(3)任意的
,都有
成立即
恒成立,等價于
恒成立
已知函數在
與
時都取得極值.
(1)求的值及函數
的單調區間;www.7caiedu.cn
(2)若對,不等式
恒成立,求
的取值范圍.
【解析】根據與
是
的兩個根,可求出a,b的值,然后利用導數確定其單調區間即可.
(2)此題本質是利用導數其函數f(x)在區間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.
設函數
(1)當時,求曲線
處的切線方程;
(2)當時,求
的極大值和極小值;
(3)若函數在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com