故的取值范圍為 查看更多

 

題目列表(包括答案和解析)

已知函數,.

(Ⅰ)若函數依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實數,使對任意的,不等式 恒成立.求正整數的最大值.

【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。

第二問中,利用存在實數,使對任意的,不等式 恒成立轉化為,恒成立,分離參數法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉化為存在實數,使對任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,則.

,則,因為,有.

在區間上是減函數。又

故存在,使得.

時,有,當時,有.

從而在區間上遞增,在區間上遞減.

[來源:]

所以當時,恒有;當時,恒有

故使命題成立的正整數m的最大值為5

 

查看答案和解析>>

已知函數,

(1)設常數,若在區間上是增函數,求的取值范圍;

(2)設集合,若,求的取值范圍.

【解析】本試題主要考查了三角函數的性質的運用以及集合關系的運用。

第一問中利用

利用函數的單調性得到,參數的取值范圍。

第二問中,由于解得參數m的取值范圍。

(1)由已知

又因為常數,若在區間上是增函數故參數 

 (2)因為集合,,若

 

查看答案和解析>>

已知函數 f(x)=在[1,+∞)上為減函數,求實數a的取值范圍.

【解析】本試題考查了導數在研究函數中的運用。根據函數f(x)=在[1,+∞)上為減函數,可知導函數在給定區間恒小于等于零,f ′(x)≤0在[1,+∞)上恒成立,lna≥1-lnx在[1,+∞)上恒成立.然后利用φ(x)=1-lnx,φ(x)max=1,從而得到a≥e

f ′(x)=,因為 f(x)在[1,+∞)上為減函數,故 f ′(x)≤0在[1,+∞)上恒成立,即lna≥1-lnx在[1,+∞)上恒成立.設φ(x)=1-lnx,φ(x)max=1,故lna≥1,a≥e,

 

查看答案和解析>>

已知函數.(

(1)若在區間上單調遞增,求實數的取值范圍;

(2)若在區間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區間上單調遞增,則在區間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.然后求解得到。

解:(1)在區間上單調遞增,

在區間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區間上是增函數,并且在該區間上有,不合題意;

,即時,同理可知,在區間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區間上恒有,從而在區間上是減函數;

要使在此區間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

已知集合

A=, B=.

(1)若,求A∩B,;

(2)若A,求實數m的取值范圍。

【解析】第一問首先翻譯A,B為最簡集合,即為

A=

B=

然后利用當m=-1時,則有 B=

 , 

第二問,因為A,

所以滿足A

得到結論。

解:因為A=

,

B=

當m=-1時,則有 B=

 , 

(2) 因為A

所以滿足A

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视