題目列表(包括答案和解析)
把函數的圖象按向量
平移得到函數
的圖象.
(1)求函數的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
,便可以得到結論。第二問中,令
,然后求導,利用最小值大于零得到。
(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令,……6分
則……8分
,∴
,∴
在
上單調遞增.……10分
故,即
已知冪函數滿足
。
(1)求實數k的值,并寫出相應的函數的解析式;
(2)對于(1)中的函數,試判斷是否存在正數m,使函數
,在區間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結合二次函數的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當k=0時,
,
當k=1時,,綜上所述,k的值為0或1,
。………………6分
(2)函數,………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當時,
,因為在區間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
函數在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式
(2)函數的圖象經過怎樣的變換可得到
的圖象?
(3)若函數滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用
又因
又
函數
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,可得結論。
解:(1)
又因
又
函數
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,
故所有實數之和為
某市投資甲、乙兩個工廠,2011年兩工廠的產量均為100萬噸,在今后的若干年內,甲工廠的年產量每年比上一年增加10萬噸,乙工廠第年比上一年增加
萬噸,記2011年為第一年,甲、乙兩工廠第
年的年產量分別為
萬噸和
萬噸.
(Ⅰ)求數列,
的通項公式;
(Ⅱ)若某工廠年產量超過另一工廠年產量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.
【解析】本試題主要考查數列的通項公式的運用。
第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98
第二問,考查等差數列與等比數列的綜合,考查用數列解決實際問題,其步驟是建立數列模型,進行計算得出結果,再反饋到實際中去解決問題.由于比較兩個工廠的產量時兩個函數的形式較特殊,不易求解,故采取了列舉法,數據列舉時作表格比較簡捷.
解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分
(Ⅱ)由于n,各年的產量如下表
n 1 2 3 4 5 6 7 8
an 100 110 120 130 140 150 160 170
bn 100 102 106 114 130 162 226 354
2015年底甲工廠將被乙工廠兼并
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com