[解](Ⅰ)∵數列是等比數列 查看更多

 

題目列表(包括答案和解析)

數列的前n項和。

   (1)求證:數列是等比數列,并求的通項公式;

   (2)如果對任意恒成立,求實數k的取值范圍。

【解析】本試題主要是考查了等比數列的定義的運用,以及運用遞推關系求解數列通項公式的運用,并且能借助于數列的和,放縮求證不等式的綜合試題。

 

查看答案和解析>>

已知是等差數列,其前n項和為Sn,是等比數列,且,.

(Ⅰ)求數列的通項公式;

(Ⅱ)記,,證明).

【解析】(1)設等差數列的公差為d,等比數列的公比為q.

,得,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數學歸納法)

①  當n=1時,,故等式成立.

②  假設當n=k時等式成立,即,則當n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數列{cn}滿足,求{cn}的前n項和Tn.

【解析】本試題主要是考查了等比數列的通項公式和求和的運用。第一問中,利用等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項求和得到Tn.

解: (Ⅰ) 設:{an}的公差為d,

因為解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因為……………8分

 

查看答案和解析>>

已知數列滿足(I)求數列的通項公式;

(II)若數列,前項和為,且證明:

【解析】第一問中,利用

∴數列{}是以首項a1+1,公比為2的等比數列,即 

第二問中, 

進一步得到得    即

是等差數列.

然后結合公式求解。

解:(I)  解法二、,

∴數列{}是以首項a1+1,公比為2的等比數列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數列.

     

 

查看答案和解析>>

已知數列是首項為的等比數列,且滿足.

(1)   求常數的值和數列的通項公式;

(2)   若抽去數列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數列,試寫出數列的通項公式;

(3) 在(2)的條件下,設數列的前項和為.是否存在正整數,使得?若存在,試求所有滿足條件的正整數的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數p使得數列為等比數列,

,所以p=1

故數列為首項是2,公比為2的等比數列,即.

此時也滿足,則所求常數的值為1且

第二問中,解:由等比數列的性質得:

(i)當時,

(ii) 當時,,

所以

第三問假設存在正整數n滿足條件,則

則(i)當時,

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视