聯立 得點的坐標為. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

 (2)若圓與直線交于兩點,且,求的值.

【解析】本試題主要是考查了直線與圓的位置關系的運用。

(1)曲線軸的交點為(0,1),

軸的交點為(3+2,0),(3-2,0) 故可設的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.

(2)因為圓與直線交于、兩點,且。聯立方程組得到結論。

 

查看答案和解析>>

設橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標原點,

(1)求橢圓E的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數法求解,并且考查了圓與橢圓的位置關系的研究,利用恒有交點,聯立方程組和韋達定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>

設橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標原點,

(1)求橢圓E的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數法求解,并且考查了圓與橢圓的位置關系的研究,利用恒有交點,聯立方程組和韋達定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>

設橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標原點,

(1)求橢圓E的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。

【解析】本試題主要是考查了橢圓方程的求解,待定系數法求解,并且考查了圓與橢圓的位置關系的研究,利用恒有交點,聯立方程組和韋達定理一起表示向量OA,OB,并證明垂直。

 

查看答案和解析>>

過拋物線y2=2px(p>0)的對稱軸上的定點M(m,0)(m>0),作直線AB與拋物線相交于A,B兩點.

(1)試證明:A,B兩點的縱坐標之積為定值;

(2)若點N是定直線l:x=-m上的任一點,試探索三條直線AN,MN,BN的斜率之間的關系,并給出證明.

探究:本題第一問,涉及直線與拋物線的交點問題,求證的是這兩個交點的縱坐標間的關系,不難想到聯立直線與拋物線方程消去x,從而達到目的;對于第二問,容易想到將這三條直線的斜率,從而得到結論.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视