題目列表(包括答案和解析)
((本小題共13分)
若數列滿足
,數列
為
數列,記
=
.
(Ⅰ)寫出一個滿足,且
〉0的
數列
;
(Ⅱ)若,n=2000,證明:E數列
是遞增數列的充要條件是
=2011;
(Ⅲ)對任意給定的整數n(n≥2),是否存在首項為0的E數列,使得
=0?如果存在,寫出一個滿足條件的E數列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數列A5)
(Ⅱ)必要性:因為E數列A5是遞增數列,所以.所以A5是首項為12,公差為1的等差數列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數列.綜上,結論得證。
已知數列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設,
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當時,
,命題成立;
②假設時,命題成立,即
,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數,不等式②成立. ………………10分
②由于,
所以,
從而.
也即
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
如圖,在直三棱柱中,底面
為等腰直角三角形,
,
為棱
上一點,且平面
平面
.
(Ⅰ)求證:點為棱
的中點;
(Ⅱ)判斷四棱錐和
的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,
面
。由此知:
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作
于
點,取
的中點
,連
。
面
面
且相交于
,面
內的直線
,
面
!3分
又面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
某校從參加高三年級理科綜合物理考試的學生中隨機抽出名學生,將其數學成績(均為整數)分成六段
,
…
后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分數在內的頻率,并補全這個頻率分布直方圖;
(Ⅱ)統計方法中,同一組數據常用該組區間的中點值作為代表,據此估計本次考試的
平均分;
(Ⅲ)若從名學生中隨機抽取
人,抽到的學生成績在
記
分,在
記
分,
在記
分,用
表示抽取結束后的總記分,求
的分布列和數學期望.
【解析】(1)中利用直方圖中面積和為1,可以求解得到分數在內的頻率為
(2)中結合平均值可以得到平均分為:
(3)中用表示抽取結束后的總記分x, 學生成績在
的有
人,在
的有
人,在
的有
人,結合古典概型的概率公式求解得到。
(Ⅰ)設分數在內的頻率為
,根據頻率分布直方圖,則有
,可得
,所以頻率分布直方圖如右圖.……4分
(求解頻率3分,畫圖1分)
(Ⅱ)平均分為:……7分
(Ⅲ)學生成績在的有
人,在
的有
人,
在的有
人.并且
的可能取值是
. ………8分
則;
;
;
;
.(每個1分)
所以的分布列為
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
…………………13分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com