題目列表(包括答案和解析)
將側棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐
的側面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.已知直角三角形具有性質:“斜邊的中線長等于斜邊邊長的一半”.仿照此性質寫出直角三棱錐具有的性質: .
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
將側棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側面和底面分別叫為直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.請仿照直角三角形以下性質:(1)斜邊的中線長等于斜邊邊長的一半;(2)兩條直角邊邊長的平方和等于斜邊邊長的平方;(3)斜邊與兩條直角邊所成角的余弦平方和等于1.寫出直角三棱錐相應性質(至少一條):_____________________.
1、C 2、A 3、C 4、A 5、C 6、B 7、B 8、D 9、A 10、C 11、B 12、D
13、1.56 14、5 15、
16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方;(3)斜面與三個直角面所成二面角的余弦平方和等于1,等等
17、解:
(Ⅰ)
=
=
=
=
(Ⅱ) ∵ ∴
,
又∵ ∴
當且僅當 b=c=
時,bc=
,故bc的最大值是
.
18、
19、(1)證明:底面
且
平面
平面
(2)解:因為,且
,
可求得點到平面
的距離為
(3)解:作,連
,則
為二面角
的平面角
設,
,在
中,求得
,
同理,,由余弦定理
解得, 即
=1時,二面角
的大小為
20、
21、解:設
由題意可得:
即
又
相減得:
∴
∴直線的方程為
,即
.
(2)設:
,代入圓的方程整理得:
∵是上述方程的兩根
∴
同理可得:
∴.
22、解:(1)由題意,在[
]上遞減,則
解得
所以,所求的區間為[-1,1]
取,
即不是
上的增函數
所以,函數在定義域內不單調遞增或單調遞減,從而該函數不是閉函數
(3)若是閉函數,則存在區間[
],在區間[
]上,函數
的值域為[
],即
,
為方程
的兩個實數根,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com