(1)若的重心是,求直線的方程,(三角形重心是三角形三條中線的交點.并且重心到頂點的距離是它到對邊中點距離的兩倍) 查看更多

 

題目列表(包括答案和解析)

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

已知雙曲線的中心在原點O,其中一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

已知雙曲線的中心在原點O,其中一條準線方程為,且與橢圓有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

已知雙曲線的中心在原點O,其中一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

13、1.56   14、5   15、

 16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方;(3)斜面與三個直角面所成二面角的余弦平方和等于1,等等

17、解: (Ⅰ)   =
  =   =   =

  (Ⅱ) ∵   ∴ ,
  又∵   ∴   當且僅當 b=c=時,bc=,故bc的最大值是.

18、

19、(1)證明:底面           

          

平面平面

(2)解:因為,且,

      可求得點到平面的距離為

(3)解:作,連,則為二面角的平面角

      設,在中,求得,

同理,,由余弦定理

解得, 即=1時,二面角的大小為

20、

21、解:設

由題意可得:

                                 

相減得:

                                 

∴直線的方程為,即

(2)設,代入圓的方程整理得:

是上述方程的兩根

             

同理可得:     

.                             

22、解:(1)由題意,在[]上遞減,則解得  

所以,所求的區間為[-1,1]        

(2)取,即不是上的減函數

,

不是上的增函數

所以,函數在定義域內不單調遞增或單調遞減,從而該函數不是閉函數

(3)若是閉函數,則存在區間[],在區間[]上,函數的值域為[],即,為方程的兩個實數根,

即方程有兩個不等的實根

時,有,解得

時,有,無解

綜上所述,

 

 

 


同步練習冊答案
久久精品免费一区二区视