15在數列{}中.若=1, =2+3 ,則該數列的通項= . 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,若角α的頂點在坐標原點,始邊在x軸的非負半軸上,終邊經過點P(3a,-4a)(其中a<0),則sinα+cosα的值為( 。
A、-
1
5
B、-
4
5
C、
3
5
D、
1
5

查看答案和解析>>

(2012•盧灣區一模)已知函數f(x)=
x+1-tt-x
(t為常數).
(1)當t=1時,在圖中的直角坐標系內作出函數y=f(x)的大致圖象,并指出該函數所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數列{an}的單調性并由此寫出該數列中最大項和最小項(可用[t]來表示不超過t的最大整數).
(3)利用函數y=f(x)構造一個數列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數列的過程繼續下去;若xi不在定義域中,則構造數列的過程停止.若可用上述方法構造出一個常數列{xn},求t的取值范圍.

查看答案和解析>>

(2012•盧灣區一模)已知函數f(x)=
x+1-tt-x
(t為常數).
(1)當t=1時,在圖中的直角坐標系內作出函數y=f(x)的大致圖象,并指出該函數所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數列{an}的單調性并由此寫出該數列中最大項和最小項(可用[t]來表示不超過t的最大整數).
(3)利用函數y=f(x)構造一個數列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數列的過程繼續下去;若xi不在定義域中,則構造數列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求實數t的值.

查看答案和解析>>

在數列{an}.中,如果對任意的n∈N,都有
an+2
an+1
-
an+1
an
=e(e為常數),則稱數列{an}為比等差數列,e稱為比公差.現給出下列命題:
①等比數列一定是比等差數列,等差數列不一定是比等差數列;
②如果{an}是等差數列,{bn}是等比數列,那么數列{anbn}是比等差數列:
③斐波那契數列{Fn}不是比等差數列;
④若an=2n-1•(n-1),則數列{an}為比等差數列,比公差e=2.
其中正確命題的序號是
 

查看答案和解析>>

在數列{
a
 
n
}中
a
 
1
=1,
a
 
n+1
=c
a
 
n
+cn+1(2n+1)(n∈N*)
,其中c≠0.
(Ⅰ)求{
a
 
n
}
通項公式;
(Ⅱ)若對一切k∈N*
a
 
2k
a
 
2k-1
,求c的取值范圍.

查看答案和解析>>

一.選擇題 1B  2B  3B   4C  5B  6A  7B   8D  9C  10C  11A  12B

二.填空題  13.3      14.      15.     16.

三.解答題

17.解:由已知      所以

所以.…… 4分

    解得.

所以   …… 8分

 于是 …… 10分

…… 12分

18.(Ⅰ)設{an}的公比為q,由a3=a1q2得    …… 2分

          (Ⅱ)…… 12分

19.解: (1)由知, …①        ∴…②…… 2分

恒成立,

恒成立, 故…… 4分

 將①式代入上式得:

, 即, 即,代入②得, …… 8分

(2) 解得:

, ∴不等式的解集為…… 12分

20、證(I)由a1=1,an+1=Sn(n=1,2,3,…),知a2=S1=3a1,, ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),則Sn+1-Sn=Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故數列{}是首項為1,公比為2的等比數列 …… 8分

證(II) 由(I)知,,于是Sn+1=4(n+1)?=4an(n)…… 12分

又a2=3S1=3,則S2=a1+a2=4=4a1,因此對于任意正整數n≥1都有Sn+1=4an

21. 解:(1). …… 2分

時, 時,, 因此的減區間是

 在區間上是減函數…… 5分

時, 時,, 因此的減區間是…… 7分

 在區間上是減函數

綜上,…… 8分

(2). 若

在區間上,     …… 12分

22.解:(1)由題意和導數的幾何意義得:

由(1)得c=-a-2c,代入a<b<c,再由a<0得

…… 6分

…… 10分

…… 14分

 

 


同步練習冊答案
久久精品免费一区二区视