(2)求E(5-1). 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實數的值;
(II )求直線x-2y-3=0在矩陣M所對應的線性變換作用下的像的方程.
(2)選修4-4:坐標系與參數方程
在直角坐標平面內,以坐標原點O為極點x軸的非負半軸為極軸建立極坐標系.已知曲線C的參數方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數,并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數.
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結論求函數y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量
e1
=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標系與參數方程
過點M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數)相交于A、B兩點,試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實數a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

(2013•陜西)有7位歌手(1至7號)參加一場歌唱比賽,由500名大眾評委現場投票決定歌手名次,根據年齡將大眾評委分為5組,各組的人數如下:
組別 A B C D E
人數 50 100 150 150 50
(Ⅰ) 為了調查評委對7位歌手的支持狀況,現用分層抽樣方法從各組中抽取若干評委,其中從B組中抽取了6人.請將其余各組抽取的人數填入下表.
組別 A B C D E
人數 50 100 150 150 50
抽取人數 6
(Ⅱ) 在(Ⅰ)中,若A,B兩組被抽到的評委中各有2人支持1號歌手,現從這兩組被抽到的評委中分別任選1人,求這2人都支持1號歌手的概率.

查看答案和解析>>

(2012•菏澤一模)已知直線l:y=x+
6
,圓O:x2+y2=5,橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)的離心率e=
3
3
,直線l被圓O截得的弦長與橢圓的短軸長相等.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證兩切線斜率之積為定值.

查看答案和解析>>

(1)計算:
1
2
-1
-(
3
5
)
0
+(
9
4
)
-0.5
+
4(
2
-e)
4
;
(2)已知2a=5b=100,求
1
a
+
1
b
的值.

查看答案和解析>>

1.(理)A。ㄎ模〣 2.(理)B (文)B 3.B 4.A 5.D 

6.(理)B。ㄎ模〥 7.B 8.(理)C (文)D 9.D 10.D 11.C

12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

  (2)由(1)知

  ∴ 

  18.解析:(1)以點為坐標原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標系,設,a,(0,+∞).

  ∵ 三棱柱為正三棱柱,則,B,C的坐標分別為:(b,0,0),,,,,,(0,0,a). ∴  ,,,

 。2)在(1)條件下,不妨設b=2,則,

  又A,M,N坐標分別為(b,0,a),(,0),(,,a).

  ∴ ,.  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點為P,則,為二面角的平面角,而點P坐標為(1,0,),

  ∴ ,,. 同理 ,,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務津貼+車輛、器械裝備費+森林損失費

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當且僅當,即x=27時,y有最小值36450.

  故應該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當AB、C三點不共線時,由三角形中線性質知

;

  當ABC三點共線時,由在線段BC外側,由x=5,因此,當x=1或x=5時,有,

  同時也滿足:.當A、B、C不共線時,

定義域為[1,5].

 。2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,

  兩邊對t求導得:關于t在[-2,2]上單調增.

  ∴ 當t=2時,=3,此時x=1. 當t=2時,=7.此時x=5.故d的取值范圍為[3,7].

  (文)由,

  ∴ 當x=3時,.當x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數.

 。2)設,則,而,.即 當時,

  ∴ fx)在(0,1)上單調遞減.

 。3)(理)由于,

  ,,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,是空間中三個不共面的向量,由向量基本定理知,存在三個實數,,使得abc

  由 0bc, 同理

  ∴ .           、

  又 AHOH,

  ∴ =0

                     ②

  聯立①及②,得 、

  又由①,得 ,,,代入③得:

  ,,

  其中,于是

 。ㄎ模1)聯立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于A,B兩點, ∴

  又依題 OAOB,令AB兩點坐標分別為(,),(),則 

  且 

,而由方程(*)知:代入上式得.滿足條件.

 。2)假設這樣的點A,B存在,則lyax+1斜率a=-2.又AB中點,上,則

  又 ,

  代入上式知 這與矛盾.

  故這樣的實數a不存在.

 


同步練習冊答案
久久精品免费一区二区视