題目列表(包括答案和解析)
(本題14分)已知集合A=,B=
,
(1)當時,求
(2)若:
,
:
,且
是
的必要不充分條件,求實數
的取值范圍。
(本題14分)如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中點.
(1)FD∥平面ABC;
(2)AF⊥平面EDB.
(本題14分)已知集合A=,B=
,
(1)當時,求
(2)若:
,
:
,且
是
的必要不充分條件,求實數
的取值范圍。
(本題14分)關于二次函數
(1)若恒成立,求實數
的取值范圍
(2)若方程在區間
上有解,求實數
的取值范圍。
(本題14分)在(0,1]上定義函數
又利用f(x)定義一個數列:取,令
1)當時,寫出這個數列;
2)當時,寫出這個數列;
一、選擇題:本大題共10小題,每小題5分,共50分.
題號
1
2
3
4
5
6
7
8
9
10
解答
B
D
A
B
D
B
D
C
D
C
二、填空題:本大題共7小題,每小題4分,共28分
11. 負
12.
13.
14.
15. 2 16. 2125
17.
三、解答題:本大題共5小題,共72分.解答應寫出文字說明,證明過程或演算步驟.
18.解:(1)=
,得:
=
,
即:,
…………………………………………………………3分
又∵0<<
,
∴=
.
…………………………………………………………5分
(2)直線方程為:
.
,點
到直線
的距離為:
.
∵
∴, …………………………………………………………9分
∴, …………………………………………………………11分
又∵0<<
,
∴sin>0,cos
<0; …………………………………………………………12分
∴
∴sin-cos
=
……………14分
19.(Ⅰ)證明:連A1B,D
……2分
連結,則
又,故D1E⊥平面AB
(Ⅱ)由(Ⅰ)知,E為棱BC的中點.
………………9分
(Ⅲ).
………………………11分
在中,
………………………14分
20. (Ⅰ)證明:令
,總有
恒成立.
,總有
恒成立.
即
令
令
故函數是奇函數.
………………………………………………5分
(Ⅱ) ,
.…………………………………………8分
……………………………………………………………………………10分
(Ⅲ)
……………………………………………………………………………15分
21.解:(Ⅰ)若為等腰直角
三角形,所以有OA=OF2,即b=c . ………2分
所以 …………5分
(Ⅱ)由題知
其中,.
由 …8分
將B點坐標代入,
解得. 、佟 10分
又由 ② …12分
由①, ②解得,
所以橢圓方程為.
……………………………………………14分
22.解:
(Ⅰ)由題意,得
所以,
…………………………………………5分
(Ⅱ)由(Ⅰ)知,,
-4
(-4,-2)
-2
1
+
0
-
0
+
極大值
極小值
函數值
-11
13
4
在[-4,1]上的最大值為13,最小值為-11。 …………………10分
(Ⅲ)
或
.所以存在
或
,使
.
……………15分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com