設是正實數.則函數的最小值為 查看更多

 

題目列表(包括答案和解析)

設函數f(x)=lg(x2+ax-a-1),給出如下命題:
①函數f(x)必有最小值;
②若a=0時,則函數f(x)的值域是R;
③若a>0,且f(x)的定義域為[2,+∞),則函數f(x)有反函數;
④若函數f(x)在區間[2,+∞)上單調遞增,則實數a的取值范圍是[-4,+∞).
其中正確的命題序號是
 
.(將你認為正確的命題序號都填上)

查看答案和解析>>

設函數f(x)=|x|x+bx+c,則下列命題中正確命題的序號有
 
(請將你認為正確命題的序號都填上)
①當b>0時,函數f(x)在R上是單調增函數;
②當b<0時,函數f(x)在R上有最小值;
③函數f(x)的圖象關于點(0,c)對稱;
④方程f(x)=0可能有三個實數根.

查看答案和解析>>

設函數f(x)=lg(x2+ax-a-1),給出下述命題:
①函數f(x)的值域為R;
②函數f(x)有最小值;
③當a=0時,函數f(x)為偶函數;
④若f(x)在區間[2,+∞)上單調遞增,則實數a的取值范圍a≥-4.
正確的命題是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

設函數f(x)=lg(x2+ax-a-1),給出下列命題:
(1)f(x)有最小值; 
(2)當a=0時,f(x)的值域為R;
(3)當a>0時,f(x)在區間[2,+∞)上有單調性;
(4)若f(x)在區間[2,+∞)上單調遞增,則實數a的取值范圍是a≥-4.
則其中正確的命題是
(2)(3)
(2)(3)
.(寫上所有正確命題的序號).

查看答案和解析>>

記函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A1,A2,P為函數f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

一、1、D    2、A   3、B    4、D    5、B    6、C   7、A    8、D   9、A   10、C

二、11、二     12、2cm     13、1     14、49720,    15、5www.ks5 u.com

三、16、解:

(1)……3分

,得……………………………5分

(2)由(1)得………7分

時,的最大值為…………………………………9分

,得值為集合為………………………10分

(3)由所以時,為所求….12分

 

 

17、解:www.ks5 u.com

(1)

   數列的各項均為正數,

   即,所以數列是以2為公比的等比數列……………………3分

的等差中項,

數列的通項公式…………………………………………………………6分

(2)由(1)及,…………………………………………8分

    

                        ①

      ②

②-①得,

…10分

要使成立,只需成立,即

使成立的正整數n的最小值為5…………………………………12分

18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

“兩球恰好顏色不同”共2×4+4×2=16種可能,………………4分

解法二:“有放回摸取”可看作獨立重復實驗   每次摸出一球得白球的概率為

 “有放回摸兩次,顏色不同”的概率為………………………4分

(2)設摸得白球的個數為,依題意得

……

…………………………………………………………………………………………10分

     ……………………………………………………12分

19、證明:(1)平面 平面平面,

平面 側面側面……………………4分

(2)的中點, 

側面側面 從而  故的長就是點到側面的距離在等腰中,……………………………………8分

說明:亦可利用向量的方法求得

(3)幾何方法:可以證明就是二面角

平面角……………………………………10分

從而………………13分

亦可利用等積轉換算出到平面的高,

從而得出二面角的平面角為……13分

說明:也可以用向量法:平面的法向量為

平面的法向量為………………10分

二面角的平面角為

20、解(1)設雙曲線方程為

由已知得,再由,得

故雙曲線的方程為.…………………………………………5分

(2)將代入

 由直線與雙曲線交與不同的兩點得

 即.   ①   設,則…………………8分

,由

.…………………………11分

于是,即解此不等式得    ②

由①+②得

故的取值范圍為…………………………………13分

21、解:(1)由題設知,又,得……………2分

       (2)…………………………………………………3分

        由題設知

  …………………………………………………4分

(當時,取最小值)……………………4分

時,當且僅當   …………………7分

(3)時,方程變形為

 令………9分

,得,

,得………………………………11分

又因為

取得唯一的極小值

又當時,的值,當時,

的值,函數草圖如右

兩圖像由公共點時,方程有解,,

的最小值為,………………………………………………13分

 

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视