(A)3 (B) (C) (D)2 查看更多

 

題目列表(包括答案和解析)

(A)(不等式選做題)
若關于x的不等式|a|≥|x+1|+|x-2|存在實數解,則實數a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為
2
3
3
2
3
3

(C)(坐標系與參數方程選做題) 
在已知極坐標系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實數a=
2或-8
2或-8

查看答案和解析>>

(A)AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為________
(B)若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為________.
(C)參數方程數學公式(α是參數)表示的曲線的普通方程是________.

查看答案和解析>>

θ=
3
”是“tanθ=2cos(
π
2
+θ)
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

θ≠
3
cosθ≠-
1
2
的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

(1)y=tanx在定義域上是增函數;
(2)y=sinx在第一、第四象限是增函數;
(3)y=sinx與y=cosx在第二象限都是減函數;
(4)y=sinx在x∈[-
π
2
,
π
2
]
上是增函數,上述四個命題中,正確的個數是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

一、填空題:

1.   2.    3.     4.12     5.     6.11    7.     8.2009         9.4個    10.①②

11.解: 。因為△ABC的面積為1, ,所以,△ABE的面積為,因為D是AB的中點,所以, △BDE的面積為,因為,所以△BDF的面積為,當且僅當時,取得最大值。

二、選擇題:

12.B    13.C     14.D     15.D

三、解答題:

16.解:(Ⅰ)因為點的坐標為,根據三角函數定義可知,,,                                            2分

所以                                                4分

(Ⅱ)因為三角形為正三角形,所以,,                                                     5分

所以

                                               8分

所以

。                                        11分

17.解:方法一:(I)證明:連結OC,因為所以      

所以,                               2分

中,由已知可得

所以所以

       所以平面。                                 4分

(II)解:取AC的中點M,連結OM、ME、OE,由E為BC的中點知

所以直線OE與EM所成的銳角就是異面直線AB與CD所成的角,          5分

中,因為是直角斜邊AC上的中線,所以所以所以異面直線AB與CD所成角的大小為。                                                       8分

(III)解:設點E到平面ACD的距離為,因為

                                                                     9分

中, 所以

所以,

所以點E到平面ACD的距離為。                                   12分

方法二:(I)同方法一。

(II)解:以O為原點,如圖建立直角坐標系,則 ,設的夾角為,則所以異面直線AB與CD所成角的大小為。

(III)解:設平面ACD的法向量為

         

是平面ACD的一個法向量。又 所以點E到平面ACD的距離       。

 18.解:(Ⅰ)由年銷售量為件,按利潤的計算公式,有生產A、B兩產品的年利潤分別為:

         2分

所以                      5分

(Ⅱ)因為所以為增函數,

,所以時,生產A產品有最大利潤為(萬美元)                         7分

,所以時,生產B產品

有最大利潤為460(萬美元)                                        9分

現在我們研究生產哪種產品年利潤最大,為此,我們作差比較:

  11分

所以:當時,投資生產A產品200件可獲得最大年利潤;

     當時,生產A產品與生產B產品均可獲得最大年利潤;

     當時,投資生產B產品100件可獲得最大年利潤。12分

19.解:(1)當時, ,成立,所以是奇函數;

3分

時,,這時所以是非奇非偶函數;                                                            6分

(2)當時,,則

                  9分

時,因為,所以

所以

,所以是區間 的單調遞減函數。 12分

同理可得是區間 的單調遞增函數。                           14分

20.解:(Ⅰ)由拋物線,設,上,且,所以,得,代入,得

所以。                                                      4分

上,由已知橢圓的半焦距,于是

消去并整理得  , 解得不合題意,舍去).

故橢圓的方程為。                                      7分

(另法:因為上,

所以,所以,以下略。)

(Ⅱ)由,所以點O到直線的距離為

,又,

所以,

。                                      10分

下面視提出問題的質量而定:

如問題一:當面積為時,求直線的方程。()      得2分

問題二:當面積取最大值時,求直線的方程。()       得4分

21.解:(1)

2

3

35

100

97

94

3

1

                                                                     4分

(2)由題意知數列的前34項成首項為100,公差為-3的等差數列,從第35項開始,奇數項均為3,偶數項均為1,                              6分

從而=                     8分

    =。                  10分

(3)當時,因為,                       

 所以                                12分

時,

因為,所以,                      14分

時,

所以。                                                   16分

 

 

 

 


同步練習冊答案
久久精品免费一区二区视