17.本小題滿分12分)已知都是定義在上的函數.若存在正實數使得總成立.則稱為在上的生成函數.若.. 查看更多

 

題目列表(包括答案和解析)

本小題滿分12分)
某商店搞促銷活動,規則如下:木箱內放有5枚白棋子和5枚黑棋子,顧客從中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,則有獎品,獎勵辦法如下表:

取出的棋子
獎品
5枚白棋子
價值50元的商品
4枚白棋子
價值30元的商品
3枚白棋子
價值10元的商品
如果取出的不是上述三種情況,則顧客需用50元購買商品.
(1)求獲得價值50元的商品的概率;
(2)求獲得獎品的概率;
(3)如果顧客所買商品成本價為10元,假設有10 000人次參加這項促銷活動,則商家可以獲得的利潤大約是多少?(精確到元)

查看答案和解析>>

(本小題滿分12分)

福州市某大型家電商場為了使每月銷售空調和冰箱獲得的總利潤達到最大,對某月即將出售的空調和冰箱進行了相關調查,得出下表:

資金

每臺空調或冰箱所需資金

(百元)

月資金最多供應量

(百元)

空調

冰箱

進貨成本

30

20

300

工人工資

5

10

110

每臺利潤

6

8

 

問:該商場如果根據調查得來的數據,應該怎樣確定空調和冰箱的月供應量,才能使商場獲得的總利潤最大?總利潤的最大值為多少元?

 

查看答案和解析>>

本小題滿分12分)

某商店搞促銷活動,規則如下:木箱內放有5枚白棋子和5枚黑棋子,顧客從中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,則有獎品,獎勵辦法如下表:

取出的棋子

獎品

5枚白棋子

價值50元的商品

4枚白棋子

價值30元的商品

3枚白棋子

價值10元的商品

如果取出的不是上述三種情況,則顧客需用50元購買商品.

(1)求獲得價值50元的商品的概率;

(2)求獲得獎品的概率;

(3)如果顧客所買商品成本價為10元,假設有10 000人次參加這項促銷活動,則商家可以獲得的利潤大約是多少?(精確到元)

 

 

查看答案和解析>>

本小題滿分12分)
某商店搞促銷活動,規則如下:木箱內放有5枚白棋子和5枚黑棋子,顧客從中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,則有獎品,獎勵辦法如下表:
取出的棋子
獎品
5枚白棋子
價值50元的商品
4枚白棋子
價值30元的商品
3枚白棋子
價值10元的商品
如果取出的不是上述三種情況,則顧客需用50元購買商品.
(1)求獲得價值50元的商品的概率;
(2)求獲得獎品的概率;
(3)如果顧客所買商品成本價為10元,假設有10 000人次參加這項促銷活動,則商家可以獲得的利潤大約是多少?(精確到元)

查看答案和解析>>

(本小題滿分12分)

國家教育部、體育總局和共青團中央曾共同號召,在全國各級各類學校要廣泛、深入地開展全國億萬大中小學生陽光體育運動.為此某網站于2010年1月18日至24日,在全國范圍內進行了持續一周的在線調查,隨機抽取其中200名大中小學生的調查情況,就每天的睡眠時間分組整理如下表所示:

序號()

每天睡眠時間

(小時)

組中值()

頻數

頻率

()

1

[4,5)

4.5

8

0.04

2

[5,6)

5.5

52

0.26

3

[6,7)

6.5

60

0.30

4

[7,8)

7.5

56

0.28

5

[8,9)

8.5

20

0.10

6

[9,10)

9.5

4

0.02

(Ⅰ)估計每天睡眠時間小于8小時的學生所占的百分比約是多少;

(Ⅱ)該網站利用右邊的算法流程圖,對樣本數據作進一步統計分析,求輸出的S的值,并說明S的統計意義.

 


查看答案和解析>>

 

一、選擇題:(本大題共12小題,每小題5分,共60分)

20080801

2. 提示: 故選D

3. 提示:已知得d=3,a5=14,=3a5=42.故選B

4. 提示: 判斷cosα>0,sinα<0,數形結合.故選B

20090505

=  故選C

6. 提示: 如圖,取G的極端位置, 問題轉化為求AE與的位置關系,取AD的中點M,連接MF、可證 可見AE與FG所成的角為  A故選D

7. 提示: 當x>0時,的圖像相同,故可排除(A)、(C)、(D).故選B

8.=5,得3n=5r+10 , 當r=1時,n=5.故選C

9.提示由,得,所以,  點P的軌跡是圓(除去與直線AB的交點).故選B

 

 

 

10.提示:令f(x)= x2?(a2+b2?6b)x+ a2+b2+2a?4b+1,則由題意有f(0)= a2+b2+2a?6b+1≤0且f(1)=2a+2b+2≥0,即(a+1)2+(b?2)2≤4且a+b+1≥0,在直角坐標平面aOb上作出其可行域如圖所示,而a2+b2+4a=(a+2)2+b2?4的幾何意義為|PA|2?4(其中P(a,b)為可行域內任意的一點,A(?2,0)). 由圖可知,當P點在直線l:a+b+1=0上且AP⊥l時取得最小值;當P點為AC(C為圓(a+1)2+(b?2)2≤4的圓心)的延長線與圓C的交點時達到最大值. 又A點的直線l的距離為,|AC|=,所以a2+b2+4a的最大值和最小值分別為?和(+2)2?4=5+4.故選B.

11.提示: 易知數列{an}是以3為周期的數列,a1=2,  a2=   ,   a3= ,  a4 =2, 

a2009=故選B

12.提示: ∵是定義在R上的奇函數,

,又由已知,

,(A)成立;

,

∴(B)成立;當,又為奇函數,

,,且,

∴(C)即,

∴(C)成立;對于(D),有,由于的符號不確定,

未必成立。故選D

 

 

 

二、填空題:(本大題共4小題,每小題5分,共20分)

13.5;提示:  Tr+1=(x)n-r(-)r,由題意知:-+=27n=9

∴展開式共有10項,二項式系數最大的項為第五項或第六項,故項的系數最大的項為第五項。

14.(0,1)∪(1,10) ;提示: 當a>1時,不等式化為10-ax>a,要使不等式有解,必須10-a>0

∴1<a<10

當0<a<1時,不等式化為0<10-ax<a10-a<ax<10不等式恒有解

故滿足條件a的范圍是(0,1)∪(1,10)

15. ;提示: P=1-=

16. 提示:當直角三角形的斜邊垂直與平面時,所求面積最大。

三、解答題:(本大題共6小題,共70分)

17.(本大題10分)(1)不是,假設上的生成函數,則

存在正實數使得恒成立,令,得,與

矛盾,

所以函數一定不是上的生成函數…………5分

(2)設,因為

所以,當且僅當時等號成立,

,

  …………………………………………10分

 

18.(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,

∴CC1⊥底面ABC,∴CC1⊥BC.

       ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

       ∴與平面A1C1CA所成角,

與平面A1C1CA所成角為.…………4分

(Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結BM,

       ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內的射影,

       ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,

       平面A1C1CA中,C1C=CA=2,D為C1C的中點,

       ∴CG=2,DC=1 在直角三角形CDG中,,

       即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點F,則EF⊥平面A1BD.

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA內的射影為C1F,當F為AC的中點時,

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

19.(解:(1)分別在下表中,填寫隨機變量的分布列:

…4分

   (2);;

    

    

 …………………….. 9分

  ∴周長的分布列為:

  ……….. 10分

   …. 12分

20.(Ⅰ) 設C(x, y),

, ,  

,

∴ 由定義知,動點C的軌跡是以A、B為焦點,

長軸長為的橢圓除去與x軸的兩個交點.

.  ∴

∴ W:   . …………………………………………… 2分

(Ⅱ) 設直線l的方程為,代入橢圓方程,得

整理,得.         ①………………………… 5分

因為直線l與橢圓有兩個不同的交點P和Q等價于

,解得

∴ 滿足條件的k的取值范圍為 ………… 7分

(Ⅲ)設P(x1,y1),Q(x2,y2),則=(x1+x2,y1+y2),

由①得.                 ②

                ③

因為,, 所以.……………………… 11分

所以共線等價于

將②③代入上式,解得

所以存在常數k,使得向量共線.…………………… 12分

21.解:(1)由題意得

解得,將代入,化簡得

;………………4分    

(2)由題知,因為,所以

,則,

并且,因此,

從而,得,………..8分

(2)因為,故

,

從而………………12分

22.解: Ⅰ)∵=a+,x∈(0,e),∈[,+∞………………1分

   (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數.

       ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………3分

   (2)若a<-,則由>0a+>0,即0<x<-

       由f(x)<0a+<0,即-<x≤e

       ∴f(x)=f(-)=-1+ln(-).

       令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

       即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………6分

   (Ⅱ)當a=-1時,f(x)=-x+lnx,=-1+=

       當0<x<1時,>0;當x>1時,<0.

       ∴f(x)在(0,1)上是增函數,在(1,+∞)上減函數.

       從而f(x)=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.   ………8分

       令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-

   (1)當0<x<2時,有g(x)≥x-(1+)(x-1)-=>0.

   (2)當x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

=

       ∴g(x)在[2,+∞上增函數,

g(x)≥g(2)=

       綜合(1)、(2)知,當x>0時,g(x)>0,即|f(x)|>

故原方程沒有實解.       ……………………………………12分

 

 

 


同步練習冊答案
久久精品免费一区二区视