題目列表(包括答案和解析)
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
已知冪函數滿足
。
(1)求實數k的值,并寫出相應的函數的解析式;
(2)對于(1)中的函數,試判斷是否存在正數m,使函數
,在區間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結合二次函數的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當k=0時,
,
當k=1時,,綜上所述,k的值為0或1,
!6分
(2)函數,………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當時,
,因為在區間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com