x+≥2.當且僅當x=1時取等號. -----------------3分因為p為真.所以2≥a2-a . 查看更多

 

題目列表(包括答案和解析)

若對任意x∈A,y∈B(AR,BR)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x,y的二元函數,現定義滿足下列性質的f(x,y)為關于實數x,y的廣義“距離”:

(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;

(2)對稱性:f(x,y)=f(y,x);

(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數z均成立.給出三個二元函數:

①f(x,y)=|x-y|;

②f(x,y)=(x-y)2;

③f(x,y)=

則所有能夠成為關于x,y的廣義“距離”的序號為________.

查看答案和解析>>

在平面直角坐標系中,對其中任何一向量X=(x1,x2),定義范數||X||,它滿足以下性質:(1)||X||≥0,當且僅當X為零向量時,不等式取等號;(2)對任意的實數λ,||λX||=|λ|•||X||(注:此處點乘號為普通的乘號);(3)||X||+||Y||≥||X+Y||.應用類比的方法,我們可以給出空間直角坐標系下范數的定義,現有空間向量X=(x1,x2,x3),下面給出的幾個表達式中,可能表示向量X的范數的是
 
(把所有正確答案的序號都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

在平面直角坐標系中,對其中任何一向量X=(x1,x2),定義范數||X||,它滿足以下性質:(1)||X||≥0,當且僅當X為零向量時,不等式取等號;(2)對任意的實數λ,||λX||=|λ|•||X||(注:此處點乘號為普通的乘號);(3)||X||+||Y||≥||X+Y||.應用類比的方法,我們可以給出空間直角坐標系下范數的定義,現有空間向量X=(x1,x2,x3),下面給出的幾個表達式中,可能表示向量X的范數的是______(把所有正確答案的序號都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

若對任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對應,稱f(x,y)為關于x、y的二元函數.現定義滿足下列性質的二元函數f(x,y)為關于實數x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y=0時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數z均成立.
今給出四個二元函數:①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關于的x、y的廣義“距離”的函數的所有序號是( 。
A、①B、②C、③D、④

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數.現定義滿足下列性質的二元函數f(x,y)為關于實數x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數z均成立.
今給出三個二元函數,請選出所有能夠成為關于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關于的x、y的廣義“距離”的函數的序號是
 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视