有一項是符臺題目要求的. 查看更多

 

題目列表(包括答案和解析)

有一項是符合題目要求的.

的值為                                      (   )

A.     。拢     。茫     。模      

查看答案和解析>>

(2006•豐臺區一模)在平面直角坐標系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
共線,且點列{Bn}在斜率為6的直線上,n=1,2,3,….
(Ⅰ)證明數列{bn}是等差數列;
(Ⅱ)試用a1,b1與n表示an(n≥2);
(Ⅲ)設a1=a,b1=-a,在a6與a7兩項中至少有一項是數列{an}的最小項,試求實數 a的取值范圍.

查看答案和解析>>

在平面直角坐標系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
平行,并且點列{Bn}在斜率為6的同一直線上,n=1,2,3,….
(1)證明:數列{bn}是等差數列;
(2)試用a1,b1與n表示an(n≥2);
(3)設a1=a,b1=-a,是否存在這樣的實數a,使得在a6與a7兩項中至少有一項是數列{an}的最小項?若存在,請求出實數a的取值范圍;若不存在,請說明理由;
(4)若a1=b1=3,對于區間[0,1]上的任意λ,總存在不小于2的自然數k,當n≥k時,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

數列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項起是公差為6的等差數列,Sn是{an}的前n項和.
(1)當n≥2時,用a與n表示an與Sn
(2)若在S6與S7兩項中至少有一項是Sn的最小值,試求a的取值范圍;
(3)若a為正整數,在(2)的條件下,設Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。

查看答案和解析>>

數列{an}的通項公式an=3n2-(a+9)n+6+2a(a∈R),若a6與a7兩項中至少有一項是{an}的最小值,則實數a的取值范圍是
(24,36)
(24,36)

查看答案和解析>>

學科網(Zxxk.Com)

1.B       2.A      3.C       4.B       5.A      6.D      7.B       8.C       9.C       1 0.B 學科網(Zxxk.Com)

11.B     12.D學科網(Zxxk.Com)

1.學科網(Zxxk.Com)

2.學科網(Zxxk.Com)

3.是方程的根,或8,又學科網(Zxxk.Com)

       學科網(Zxxk.Com)

4.學科網(Zxxk.Com)

5.畫出可行域,如圖,可看為區域內的點與(0,0)連線的斜率,學科網(Zxxk.Com)

       學科網(Zxxk.Com)

6.

7.在中,,在中,,

中,,在中,

8.的圖象如圖所示

       的解集為

9.由點的軌跡是以,為焦點的雙曲線一支.

10.由獨立重復試驗的概率

11.設,圓為最長弦為直徑,最短弦的中點為,

12.幾何體的表面積是三個圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為

二、

13.平方得

      

14.的系數

15.1.互為反函數,

       令,

      

16.0或 ,設點的橫坐標為點處的切線斜率為,由夾角公式得,即

,得,矛盾

三、

17.(1),由,得,消去

             

             

(2)

      

       ,

      

       時,的最大值為時,的最大值為2.

18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為

(2)假設商場將中獎獎金數額定為元,則顧客在三歡抽獎中所獲得的獎金總額是一個隨機變量,其所有可能的取值為

      

      

      

      

于是顧客在三次抽獎中所獲得的獎金總額的期望值是

要使促銷方案對商場有利,因此應有,

故商場應將中獎獎金數額最高定為120元.才能使促銷方案對自己有利.

19.(1)證明:

連接

,又

              即        平面

(2)方法1   取的中點的中點,的中點,或其補角是所成的角.

           ∴連接斜邊上的中線,

             

              在中,由余弦定理得,

           ∴直線所成的角為

(3)方法l

       平面,過,連接,

              在平面上的射影,由三垂線定理得

              是二面角的平面角,

              ,又

中,

∴二面角

(2)方法2

建立空間直角坐標系

∴直線所成的角為

(3)方法2

在坐標系中,平面的法向量

設平面的法向量,則,

求得

∴二面角

20.是首項為、公比為的等比數列,

      

(1)當時,

      

      

      

       兩式相減得

      

      

(2)

時,,,對,,而,

時,成立,即

時,

遞增,時,

時,成立,即,

綜上得,的取值范圍是

21.(1)設

由拋物線定義,

上,,又

         舍去.

∴橢圓的方程為

       (2)∵直線的方程為為菱形,

              ,設直線的方程為

              、在橢圓上,

             

              設,則

             

的中點坐標為,由為菱形可知,點在直線上,

           ∴直線的方程為,即

22.(1),切線的議程為,即.

              令,令,

              ,

             

             

       (2)由,即

              于是

              當且僅當,即時,等號成立.

              時,時,

       (3)

              由

              當,即時,

              當,即時,

              時,取得最小值,最小值為

              由,得,此時,最小值為

 


同步練習冊答案
久久精品免费一区二区视