題目列表(包括答案和解析)
已知函數
(Ⅰ)求f(x)的單調遞增區間;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別是a、b、c滿足(2a-c)cosB=bcosC,求f(2A)的取值范圍.
已知函數
(1)求f(x)的單調遞增區間;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c,滿足(2a-c)cosB=bcosC,求函數f(A)的取值范圍.
若函數
(1)
求函數f(x)的單調遞增區間.(2)
求f(x)在區間[-3,4]上的值域求函數y=(x2+2x-3)的單調遞增區間.
(1)
已知函數(2)
證明:函數一,選擇題:
D C B CC, CA BC B
二、填空題:
(11),
-3,
(12), 27
(13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:
;
17, (1)由題意,
=1又a>0,所以a=1.
(2)g(x)=
,當
時,
=
,無遞增區間;當x<1時,
=
,它的遞增區間是
.
綜上知:的單調遞增區間是
.
18, (1)當0<t≤10時,
是增函數,且f(10)=240
當20<t≤40時,是減函數,且f(20)=240 所以,講課開始10分鐘,學生的注意力最集中,能持續10分鐘。(3)當0<t≤10時,令
,則t=4 當20<t≤40時,令
,則t≈28.57
則學生注意力在180以上所持續的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內將題講完。
19, (I)……1分
根據題意, …………4分
解得. …………7分
(II)因為……7分
(i)時,函數
無最大值,
不合題意,舍去. …………11分
(ii)時,根據題意得
解之得 …………13分
為正整數,
=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為
|