8.已知 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數m的取值范圍為
 

查看答案和解析>>

已知△ABC的外接圓的圓心O,BC>CA>AB,則
OA
OB
,
OA
OC
,
OB
OC
的大小關系為
 

查看答案和解析>>

已知函數f(x)是定義在實數集R上的不恒為零的偶函數,且對任意實數x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

15、已知y=2x,x∈[2,4]的值域為集合A,y=log2[-x2+(m+3)x-2(m+1)]定義域為集合B,其中m≠1.
(Ⅰ)當m=4,求A∩B;
(Ⅱ)設全集為R,若A⊆CRB,求實數m的取值范圍.

查看答案和解析>>

已知y=f(x)是定義在[-1,1]上的奇函數,x∈[0,1]時,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)時,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區間的長度是為,為半個周期。

    又分別取到函數的最小值

所以函數上的值域為!14分

19.解:(1)該同學投中于球但未通過考核,即投藍四次,投中二次,且這兩次不連續,其概率為                                 …………5分

   (2)在這次考核中,每位同學通過考核的概率為

      ………………10分

    隨機變量X服從其數學期望

  …………14分

20.解:(1)設FD的中點為G,則TG//BD,而BD//CE,

    當a=5時,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四邊形TGEC是平行四邊形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T為原點,以射線TB,TC,TG分別為x,y,z軸,

建立空間直角坐標系,則D(1,0,1),

              ………………6分

    則平面DEF的法向量n=(x,y,z)滿足:

 

    解之可得又平面ABC的法向量

m=(0,0,1)

   

   即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

   (3)由P在DE上,可設,……10分

    則

                   ………………11分

    若CP⊥平面DEF,則

    即

 

 

    解之得:                ……………………13分

    即當a=2時,在DE上存在點P,滿足DP=3PE,使CP⊥平面DEF!14分

21.解:(1)因為        所以

    橢圓方程為:                          ………………4分

   (2)由(1)得F(1,0),所以。假設存在滿足題意的直線l,設l的方程為

   

    代入       ………………6分

    設   ①

                  ……………………8分

    設AB的中點為M,則

    。

     ……………………11分

    ,即存在這樣的直線l;

    當時, k不存在,即不存在這樣的直線l;……………………14分

 

 

 

 

22.解:(I) ……………………2分

    令(舍去)

    單調遞增;

    當單調遞減。    ……………………4分

    為函數在[0,1]上的極大值。        ……………………5分

   (II)由

 ①        ………………………7分

,

依題意知上恒成立。

都在上單調遞增,要使不等式①成立,

當且僅當…………………………11分

   (III)由

,則

上遞增;

上遞減;

        …………………………16分

 

 


同步練習冊答案
久久精品免费一区二区视