13. “ 是“表示直線右側區域 的 條件. 查看更多

 

題目列表(包括答案和解析)

α、β表示平面,m、n表示直線,則m∥α的一個充分條件是

A.m⊥β且α⊥β                           B.α∩β=n且m∥n

C.m∥n且n∥α                           D.α∥β且mβ

查看答案和解析>>

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)若雙曲線Ck與直線y=x+1有公共點且實軸最長,求雙曲線方程;
(3)m、n為正整數,且m<n,是否存在兩條曲線Cm、Cn,其交點P與點F1(-
5
,0),F2(
5
,0)
滿足PF1⊥PF2,若存在,求m、n的值;若不存在,說明理由.

查看答案和解析>>

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x軸、y軸于A、B兩點,O為原點,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2;
(2)求線段AB中點的軌跡方程.

查看答案和解析>>

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l與x軸、y軸的正半軸交于兩點A、B;O為原點,|OA|=a,|OB|=b(a>2,b>2).
(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2;
(2)求△AOB面積的最小值.

查看答案和解析>>

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)對于點P(-1,0),是否存在曲線Ck交直線y=x+1于A、B兩點,使得
AB
=-2
BP
?若存在,求出k的值;若不存在,說明理由;
(3)已知Ck與直線y=x+1有公共點,求其中實軸最長的雙曲線方程.

查看答案和解析>>

1.解析:,故選A。

2.解析:抽取回族學生人數是,故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:∵,∴,∴,故選C。

5.解析:設公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.

7.解析:∵為正實數,∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數是增函數,∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區間上恒成立,即在區間上恒成立,∴,故選D。

9.解析:∵

,∴此函數的最小正周期是,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區間上是增函數且,∴其反函數在區間上是增函數,∴,故選A

12.解析:如圖,①當時,圓面被分成2塊,涂色方法有20種;②當時,圓面被分成3塊,涂色方法有60種;

③當時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:將代入結果為,∴時,表示直線右側區域,反之,若表示直線右側區域,則,∴是充分不必要條件。

學科網(Zxxk.Com)14.解析:∵,∴時,,又時,滿足上式,因此,。

學科網(Zxxk.Com)15.解析:設正四面體的棱長為,連,取的中點,連,∵的中點,∴,∴或其補角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

學科網(Zxxk.Com)16.解析:∵,∴,∵點的準線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關于軸對稱的兩點且做出圖形如右圖,其中為點到準線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,…2分

,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學生甲不能拿到高中畢業證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學生甲被評為三好學生的概率為!12分

19.(12分)解析:(Ⅰ)∵,∴

 ,,……………3分

(Ⅱ)∵,∴,

,∴數列自第2項起是公比為的等比數列,………………………6分

,………………………8分

(Ⅲ)∵,∴,………………10分

!12分

20.解析:(Ⅰ)∵,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

(Ⅱ)∵平面,∴,∴為二面角的平面角,………………………6分

,,∴,又∵平面,∴,∴二面角的正切值的大小為!8分

(Ⅲ)過點,交于點,∵平面,∴在平面內的射影,∴與平面所成的角,………………………10分

學科網(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標系,(Ⅰ)∵,,∴點的坐標分別是,,∴,設,∵平面,∴,∴,取,∴,∴!4分

(Ⅱ)設二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

21.解析:(Ⅰ)設拋物線方程為,將代入方程得

所以拋物線方程為!2分

由題意知橢圓的焦點為、

設橢圓的方程為,

∵過點,∴,解得,,

∴橢圓的方程為。………………………5分

(Ⅱ)設的中點為,的方程為:,

為直徑的圓交兩點,中點為。

,則

  

………………………8分

………………………10分

時,,

此時,直線的方程為。………………………12分

22.(12分)解析:(Ⅰ)∵是偶函數,∴,

又∵,………………………2分

得,,

時,;時,;時,;∴時,函數取得極大值,時,函數取得極小值。………………………5分

(Ⅱ)∵在區間上為增函數,∴上恒成立,∴

在區間上恒成立,………………………7分

……………………9分

又∵=,∵

,∴的取值范圍是!12分

 


同步練習冊答案
久久精品免费一区二区视