題目列表(包括答案和解析)
在平面直角坐標系xOy中,以O為極點,X軸的正半軸為極軸,取與直角坐標系相同的長度單位建立極坐標系.曲線C1的參數方程為:(
為參數);射線C2的極坐標方程為:
,且射線C2與曲線C1的交點的橫坐標為
(I )求曲線C1的普通方程;
(II)設A、B為曲線C1與y軸的兩個交點,M為曲線C1上不同于A、B的任意一點,若直線AM與MB分別與x軸交于P,Q兩點,求證|OP|.|OQ|為定值.
在復平面內, 是原點,向量
對應的復數是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數
和
;
(Ⅱ)復數,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
一、選擇題(每小題5分,滿分60分)
1
2
3
4
5
6
7
8
9
10
11
12
B
B
C
D
A
C
A
B
A
C
A
D
二、填空題(每小題4分,滿分16分)
13. 14.
15.100
16.③④
三、解答題(第17、18、19、20、21題各12分,第22題14分,共74分)
17.(I)
(Ⅱ)
函數
的值域為
18.解:(I)記“甲回答對這道題”、“乙回答對這道題”、“丙回答對這道題”分別為事件
、
、
,則
,且有
即
(Ⅱ)的可能取值:0,1,2,3
0
1
2
3
19.(I)設是
的中點,連結
,
則四邊形為方形,
,故
,
即
又
平面
(Ⅱ)由(I)知平面
,
又平面
,
,
取的中點
,連結
又
,
則
,取
的中點
,連結
則
為二面角
的平面角
連結,在
中,
,
取的中點
,連結
,
,在
中,
二面角
的余弦值為
法二:
(I)以為原點,
所在直線分別為
軸,
軸,
軸建立如圖所示的空間直角坐標系,則
又因為
所以,平面
(Ⅱ)設為平面
的一個法向量。
由得
取,則
又
,
設為平面
的一個法向量,由
,
,
得取
取
設與
的夾角為
,二面角
為
,顯然
為銳角,
,即為所求
20.解:(I)定義域為
時,
時,
故的單調遞增區間是
,單調遞減區間是
(Ⅱ) 即:
令
所以
在
單調遞減,在
上單調遞增
在
上有兩個相異實根
21.解:(I)由題意知:
橢圓的方程為
(Ⅱ)設
切線的方程為:
又由于點在
上,則
同理:
則直線的方程:
則直線過定點(1,0)
(Ⅲ)就是A到直線PQ的距離d的
取得等號
的最小值是
22.解:(I)
(Ⅱ)原式兩邊取倒樹,則
上式兩邊取對數,則
解得
(Ⅲ)
由題中不等式解得,
對于任意正整數均成立
注意到,構造函數
則設函數
由對
成立,得
為
上的減函數,
所以即
對
成立,因此
為
上的減函數,
即,故
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com