12.直線與的公共點的坐標是 ,設動點的坐標滿足約束條件 且為坐標原點.則的最小值為 . 查看更多

 

題目列表(包括答案和解析)

在直角坐標系中,動點與定點的距離和它到定直線的距離之比是,設動點的軌跡為,是動圓上一點.

(1)求動點的軌跡的方程;

(2)設曲線上的三點與點的距離成等差數列,若線段的垂直平分線與軸的交點為,求直線的斜率;

(3)若直線和動圓均只有一個公共點,求兩點的距離的最大值.

 

查看答案和解析>>

在直角坐標系中,動點與定點的距離和它到定直線的距離之比是,設動點的軌跡為,是動圓上一點.
(1)求動點的軌跡的方程;
(2)設曲線上的三點與點的距離成等差數列,若線段的垂直平分線與軸的交點為,求直線的斜率;
(3)若直線和動圓均只有一個公共點,求、兩點的距離的最大值.

查看答案和解析>>

在平面直角坐標系xoy中,動點P在橢圓C1
x2
2
+y2=1上,動點Q是動圓C2:x2+y2=r2(1<r<2)上一點.
(1)求證:動點P到橢圓C1的右焦點的距離與到直線x=2的距離之比等于橢圓的離心率;
(2)設橢圓C1上的三點A(x1,y1),B(1,
2
2
),C(x2,y2)與點F(1,0)的距離成等差數列,線段AC的垂直平分線是否經過一個定點為?請說明理由.
(3)若直線PQ與橢圓C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結論直線與曲線總有兩個公共點.

然后設點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據點M在橢圓的內部得到此結論)

………………6分

設點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

如圖,在平面直角坐標系中,一條定長為m的線段其端點A、B分別在x軸、y軸上滑動,設點M滿足
AM
MB
(λ是大于0的常數).
(Ⅰ)求點M的軌跡方程,并說明軌跡是什么曲線;
(Ⅱ)若λ=2,已知直線l與原點O的距離為
m
2
,且直線l與動點M的軌跡有公共點,求直線l的斜率k的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视