題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
設橢圓的方程為 , 線段
是過左焦點
且不與
軸垂直的焦點弦. 若在左準線上存在點
, 使
為正三角形, 求橢圓的離心率
的取值范圍, 并用
表示直線
的斜率.
設橢圓的方程為,過右焦點且不與
軸垂直的直線與橢圓交于
,
兩點,若在橢圓的右準線上存在點
,使
為正三角形,則橢圓的離心率的取值范圍是 .
設橢圓的方程為 ,斜率為1的直線不經過原點
,而且與橢圓相交于
兩點,
為線段
的中點.
(1)問:直線與
能否垂直?若能,求
之間滿足的關系式;若不能,說明理由;
(2)已知為
的中點,且
點在橢圓上.若
,求
之間滿足的關系式.
設橢圓的方程為 ,斜率為1的直線不經過原點
,而且與橢圓相交于
兩點,
為線段
的中點.
(1)問:直線與
能否垂直?若能,
之間滿足什么關系;若不能,說明理由;
(2)已知為
的中點,且
點在橢圓上.若
,求橢圓的離心率.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com