題目列表(包括答案和解析)
(本小題滿分14分)
已知函數對于任意
(
),都有式子
成立(其中
為常數).
(Ⅰ)求函數的解析式;
(Ⅱ)利用函數構造一個數列,方法如下:
對于給定的定義域中的,令
,
,…,
,…
在上述構造過程中,如果(
=1,2,3,…)在定義域中,那么構造數列的過程繼續下去;如果
不在定義域中,那么構造數列的過程就停止.
(。┤绻梢杂蒙鲜龇椒嬙斐鲆粋常數列,求的取值范圍;
(ⅱ)是否存在一個實數,使得取定義域中的任一值作為
,都可用上述方法構造出一個無窮數列
?若存在,求出
的值;若不存在,請說明理由;
(ⅲ)當時,若
,求數列
的通項公式.
(本小題滿分14分)已知函數在
處取得極值
.
⑴求的解析式;
⑵設是曲線
上除原點
外的任意一點,過
的中點且垂直于
軸的直線交曲線于點
,試問:是否存在這樣的點
,使得曲線在點
處的切線與
平行?若存在,求出點
的坐標;若不存在,說明理由;
⑶設函數,若對于任意
,總存在
,使得
,求
實數的取值范圍.
(本小題滿分14分)
已知:函數(
),
.
。1)若函數圖象上的點到直線
距離的最小值為
,求
的值;
。2)關于的不等式
的解集中的整數恰有3個,求實數
的取值范圍;
。3)對于函數與
定義域上的任意實數
,若存在常數
,使得不等式
和
都成立,則稱直線
為函數
與
的“分界線”。設
,
,試探究
與
是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
(本小題滿分14分)
設數列是公差為
的等差數列,其前
項和為
.
(1)已知,
,
(ⅰ)求當時,
的最小值;
(ⅱ)當時,求證:
;
(2)是否存在實數,使得對任意正整數
,關于
的不等式
的最小正整數解為
?若存在,則求
的取值范圍;若不存在,則說明理由.
(本小題滿分14分)已知函數f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數,e為自然對數底),函數y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求證:對任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 設y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1與C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2于M、N,問是否存在實數b,使得C1在M處的切線與C2在N處的切線平行?說明你的理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com