題目列表(包括答案和解析)
如圖是單位圓
上的點,
分別是圓
與
軸的兩交點,
為正三角形.
(1)若點坐標為
,求
的值;
(2)若,四邊形
的周長為
,試將
表示成
的函數,并求出
的最大值.
【解析】第一問利用設
∵ A點坐標為∴
,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴
,
∴ 當時,即
當
時 , y有最大值5. .
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
在中,滿足
,
是
邊上的一點.
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問中,利用向量的數量積設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問因為,
=m所以
,
(1)當時,則
=
(2)當時,則
=
第三問中,解:設,因為
,
;
所以即
于是
得
從而
運用三角函數求解。
(Ⅰ)解:設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為,
=m所以
,
(1)當時,則
=
;-2分
(2)當時,則
=
;--2分
(Ⅲ)解:設,因為
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數
,在
遞減,在
上遞增,所以
從而當
時,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com