依題設得解得tanAcotB=4 得tanA=4tanB.故A.B都是銳角.于是tanB>0 查看更多

 

題目列表(包括答案和解析)

若二次函數y=f(x)的圖象經過原點,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.

分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數,所以應先將f(x)的表達形式寫出來.即可求得f(-2)的表達式,然后依題設條件列出含有f(-2)的不等式(組),即可求解.

查看答案和解析>>

選做題(不等式選講選做題)設函數f(x)=|x-4|+|x-1|,則f(x)的最小值是____________,若f(x)≤5,則x的取值范圍是____________.

查看答案和解析>>

某廠制造A種電子裝置45臺,B種電子裝置55臺,為了給每臺裝置裝配一個外殼,要從兩種不同規格的薄鋼板上截取.已知甲種薄鋼板每張面積為2m2,可做A種外殼3個和B種外殼5個;乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個,用這兩種薄鋼板各多少張,才能使總的用料面積最小?(請根據題意,在下面的橫線處按要求填上恰當的關系式或數值)
解:設用甲、乙兩種薄鋼板各x張,y張,
則可做A種外殼
3x+6y
3x+6y
個,B種外殼
5x+6y
5x+6y
個,所用鋼板的總面積為z=
2x+3y
2x+3y
(m2)依題得線性約束條件為:
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
作出線性約束條件對應的平面區域如圖(用陰影表示)依圖可知,目標函數取得最小值的點為
(5,5)
(5,5)
,且最小值zmin=
25
25
(m2

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增!最大值為

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

某廠制造A種電子裝置45臺,B種電子裝置55臺,為了給每臺裝置裝配一個外殼,要從兩種不同規格的薄鋼板上截。阎追N薄鋼板每張面積為2m2,可做A種外殼3個和B種外殼5個;乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個,用這兩種薄鋼板各多少張,才能使總的用料面積最。浚ㄕ埜鶕}意,在下面的橫線處按要求填上恰當的關系式或數值)
解:設用甲、乙兩種薄鋼板各x張,y張,
則可做A種外殼______個,B種外殼______個,所用鋼板的總面積為z=______(m2)依題得線性約束條件為:______

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视