中的任意常數.是否存在使成立?若 查看更多

 

題目列表(包括答案和解析)

若函數滿足:“對于區間(1,2)上的任意實數,

|恒成立,”則稱為完美函數. 在下列四個函數中,完美函數是

A.              B.             C.             D.

查看答案和解析>>

若函數滿足:“對于區間(1,2)上的任意實數恒成立”,則稱為完美函數.在下列四個函數中,完美函數是

A. B. C. D.

查看答案和解析>>

若函數滿足:“對于區間(1,2)上的任意實數恒成立”,則稱為完美函數.在下列四個函數中,完美函數是
A.B.C.D.

查看答案和解析>>

對于定義在區間D上的函數f(x),若存在閉區間[a,b]⊆D和常數c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當x2∉[a,b]時,f(x2)>c恒成立,則稱函數f(x)為區間D上的“平底型”函數.
(Ⅰ)判斷函數f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數?并說明理由;
(Ⅱ)設f(x)是(Ⅰ)中的“平底型”函數,k為非零常數,若不等式|t-k|+|t+k|≥|k|•f(x)對一切t∈R恒成立,求實數x的取值范圍;
(Ⅲ)若函數g(x)=mx+
x2+2x+n
是區間[-2,+∞)上的“平底型”函數,求m和n的值.

查看答案和解析>>

對于如下四個函數:①f(x)=
1x
,②f(x)=|x|,③f(x)=2,④f(x)=x2
其中滿足性質:“對于區間(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”的函數為
①③
①③

查看答案和解析>>

數   學(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數的單調遞增區間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

,

.…………………………………………10分

故取球次數的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標系,則

,

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設,則.于是

舍去),

則P為棱的中點,其坐標為.…………………………………………9分

設平面的法向量為,則

,故.…………………11分

而平面的法向量是,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設

⑴若軸,可設,因,則

,得,即

軸,可設,同理可得.……………………7分

⑵當直線的斜率存在且不為0時,設,

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當時,.令,則

,遞增;若,遞減,

的極(最)大值點.于是

,即.故當時,有.………5分

(Ⅱ)解:對求導,得

①若,則上單調遞減,故合題意.

②若

則必須,故當時,上單調遞增.

③若,的對稱軸,則必須,

故當時,上單調遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數的最小值即可.

        因,

,

故當時,遞減;當時,,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分


同步練習冊答案
久久精品免费一区二区视