題目列表(包括答案和解析)
如圖所示的長方體中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴利用法向量的夾角公式,
,
∴與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點
、
,
∴,又點
,
,∴
∴,且
與
不共線,∴
.
又平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵,
∴,
,即
,
,
又,∴
平面
. ………8分
(Ⅲ)∵,
,∴
平面
,
∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴
,
∴與
的夾角為
,即二面角
的大小為
在棱長為的正方體
中,
是線段
的中點,
.
(1) 求證:^
;
(2) 求證://平面
;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定
為平行四邊形,然后
,可知結論成立。
第三問中,是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據正方體的性質,
因為,
所以,又
,所以
,
,
所以^
.
………………4分
(2)證明:連接,因為
,
所以為平行四邊形,因此
,
由于是線段
的中點,所以
, …………6分
因為面
,
平面
,所以
∥平面
. ……………8分
(3)是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
2.A解析:由知函數在
上有零點,又因為函數在(0,+
)上是減函數,所以函數y=f(x) 在(0,+
)上有且只有一個零點不妨設為
,則
,又因為函數是偶函數,所以
=0并且函數在(0,+
)上是減函數,因此-
是(-
,0)上的唯一零點,所以函數共有兩個零點
下列敘述中,是隨機變量的有( )
①某工廠加工的零件,實際尺寸與規定尺寸之差;②標準狀態下,水沸騰的溫度;③某大橋一天經過的車輛數;④向平面上投擲一點,此點坐標.
A.②③ B.①② C.①③④ 。模佗
如圖,在四棱錐中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點.
(I)求證:平面
;
(II)求證:;
(III)設PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因為,
,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是
的中點,
,
. …4分
(Ⅱ)證明:四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com