題目列表(包括答案和解析)
你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94只腳.求籠中各有幾只雞和兔?
你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?
解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數就比頭的總數多1.因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只).顯然,雞的只數就是35-12=23(只)了.
這一思路新穎而奇特,其“砍足法”也令古今中外數學家贊嘆不已.這種思維方法叫化歸法.
化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題.
1.古代《孫子算經》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數學家贊嘆不已.對此,談談你的看法.
2.我國古代數學研究一直處于領先地位,現在有所落后了,對此,我們不應只感嘆古人的偉大,而更應該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?
如圖,已知圓錐體的側面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
(1)求圓錐體的體積;
(2)異面直線與
所成角的大。ńY果用反三角函數表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得
,故
從而體積.2中取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得
,
故從而體積
.
(2)如圖2,取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
下圖展示了一個由區間(0,1)到實數集R的映射過程:區間中的實數m對應數軸上的點M,如圖1;將線段
圍成一個圓,使兩端點A、B恰好重合,如圖2;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為
,如圖3.圖3中直線
與x軸交于點
,則m的象就是n,記作
.
下列說法中正確命題的序號是 .(填出所有正確命題的序號)
④ ;②
是奇函數; ③
在定義域上單調函數;
④的圖象關于點
對稱.
下圖展示了一個由區間(0,1)到實數集R的映射過程:區間中的實數m對應數軸上的點M,如
圖1;將線段圍成一個圓,使兩端點A、B恰好重合,如圖2;再將這個圓放在平面直角坐標系
中,使其圓心在y軸上,點A的坐標為,如圖3.圖3中直線
與x軸交于點
,則m的象就是n,記作
.
(。┓匠的解是
;
(ⅱ)下列說法中正確命題的序號是 .(填出所有正確命題的序號)
①; ②
是奇函數; ③
在定義域上單調遞增; ④
的圖象關于點
對稱.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com