由三垂線定理.得. 查看更多

 

題目列表(包括答案和解析)

如圖,在正三棱柱ABC-A1B1C1中,所有棱的長度都是1,M是BC邊的中點,P是AA1邊上的點,且PA=
6
4

(1)求:點P到棱BC的距離;
(2)問:在側棱CC1上是否存在點N,使得異面直線AB1與MN所成角為45°?若存在,請說明點N的位置;若不存在,請說明理由;
(3)定義:如果平面α經過線段AA′的中點,并與線段AA′垂直,則稱點A關于平面α的對稱點為點A′.設點A關于平面PBC的對稱點為A′,求:點A′到平面AMC1的距離.

查看答案和解析>>

如圖,已知三棱柱的側棱與底面垂直,,,,分別是,的中點,點在直線上,且;

(Ⅰ)證明:無論取何值,總有

(Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;

(Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

 

查看答案和解析>>

如圖,已知三棱柱的側棱與底面垂直,,,分別是,的中點,點在直線上,且;
(Ⅰ)證明:無論取何值,總有
(Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

查看答案和解析>>

如圖,已知三棱柱的側棱與底面垂直,,,,分別是的中點,點在直線上,且;
(Ⅰ)證明:無論取何值,總有;
(Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

查看答案和解析>>

如圖,已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B滿足∠AQP=∠BQP,其中Q點坐標為(-4,0),原點O為PQ的中點.

(1)證明A、P、B三點共線.

(2)當m=2時,是否存在垂直于x軸的直線,使得被以AP為直徑的圓所截得的弦長為定值?若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视