所以.直線與平面所成的角為.解法二: 查看更多

 

題目列表(包括答案和解析)

如圖,四棱柱中,平面,底面是邊長為的正方形,側棱

 (1)求三棱錐的體積;

。ǎ玻┣笾本與平面所成角的正弦值;

 (3)若棱上存在一點,使得,當二面角的大小為時,求實數的值.

【解析】(1)在中,

.                 (3’)

(2)以點D為坐標原點,建立如圖所示的空間直角坐標系,則

       (4’)

,設平面的法向量為

,                                             (5’)

.  (7’)

(3)

設平面的法向量為,由,      (10’)

 

查看答案和解析>>

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC中點,以A為原點,建立適當的空間直角坐標系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

如圖,l1,l2是兩條互相垂直的異面直線,點P,C在直線l1上,點A, B在直線l2上,M,N分別是線段AB,AP的中點,且PC=AC=a,PA=a,
(Ⅰ)證明:PC⊥平面ABC;
(Ⅱ)設平面MNC與平面PBC所成的角為θ(0°<θ≤90°)。現給出下列四個條件:①CM=AB;②AB=a;③CM⊥AB;④BC⊥AC。請你從中再選擇兩個條件以確定cosθ的值,并求解.

查看答案和解析>>

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC中點,以A為原點,建立適當的空間直角坐標系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

(請考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計分)

甲題 :

(1)若關于的不等式的解集不是空集,求實數的取值范圍;

(2)已知實數,滿足,求最小值.

乙題:

已知曲線C的極坐標方程是=4cos。以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數)。

(1)將曲線C的極坐標方程化成直角坐標方程并把直線的參數方程轉化為普通方程;

(2) 若過定點的直線與曲線C相交于A、B兩點,且,試求實數的值。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视