又AB//DE.且AB=∴AB//FP.且AB=FP.∴ABPF為平行四邊形.∴AF//BP. 查看更多

 

題目列表(包括答案和解析)

在四棱錐 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=
1
2
BC,又AB=AE=
1
2
BC,AC=AD,
求證:面ABE⊥面BCD.
精英家教網

查看答案和解析>>

如圖, 在直角梯形ABCD中, AD∥BC, DA⊥AB, 又AD=3, AB=4, BC=,E在線段AB的延長線上. 曲線DE (含兩端點) 上任意一點到A、B兩點的距離之和都相等.

(1) 建立適當的坐標系, 并求出曲線DE的方程;

(2) 過點C能否作出一條與曲線DE相交且以C點為中心的弦? 如果不能, 請說明理由;

如果能, 請求出弦所在直線的方程.

查看答案和解析>>

在四棱錐 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=數學公式 BC,又AB=AE=數學公式BC,AC=AD,
求證:面ABE⊥面BCD.

查看答案和解析>>

(2013•嘉定區二模)如圖,已知點F(0,1),直線m:y=-1,P為平面上的動點,過點P作m的垂線,垂足為點Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)(文)過軌跡C的準線與y軸的交點M作方向向量為
d
=(a,1)的直線m′與軌跡C交于不同兩點A、B,問是否存在實數a使得FA⊥FB?若存在,求出a的范圍;若不存在,請說明理由;
(3)(文)在問題(2)中,設線段AB的垂直平分線與y軸的交點為D(0,y0),求y0的取值范圍.

查看答案和解析>>

(2013•嘉定區二模)如圖,已知點F(0,1),直線m:y=-1,P為平面上的動點,過點P作m的垂線,垂足為點Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)(理)過軌跡C的準線與y軸的交點M作直線m′與軌跡C交于不同兩點A、B,且線段AB的垂直平分線與y軸的交點為D(0,y0),求y0的取值范圍;
(3)(理)對于(2)中的點A、B,在y軸上是否存在一點D,使得△ABD為等邊三角形?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视