17證明:(Ⅰ)由題設.連結.為等腰直角三角形.所以.且.又為等腰三角形.故.且.從而. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
均為等腰直角三角形, 已知它們的直角頂點…,在曲線上,軸上(如圖),

(1) 求斜邊的長;
(2) 寫出數列的通項公式.

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設直線,代入結合韋達定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去).     …………………(2分)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

如圖,三棱柱中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點。

(I) 證明:平面⊥平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.

【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴,    又∵,∴,

由題設知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面;

(Ⅱ)設棱錐的體積為=1,由題意得,==,

由三棱柱的體積=1,

=1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

 

查看答案和解析>>

所謂反證法,就是從否定結論出發,經過邏輯推理,導出矛盾,證實結論的否定是錯誤的,從而肯定原結論是正確的這樣一種證明方法.要證不等式M>N,先假設___________,由題設及其他性質,推出矛盾,從而肯定M>N成立,這種證明方法叫做反證法.?

      

查看答案和解析>>

已知函數f(x)=x2+bx+c(b,c∈R),并設F(x)=
f(x)ex
,
(1)若F(x)圖象在x=0處的切線方程為x-y=0,求b、c的值;
(2)若函數F(x)是(-∞,+∞)上單調遞減,則
①當x≥0時,試判斷f(x)與(x+c)2的大小關系,并證明之;
②對滿足題設條件的任意b、c,不等式f(c)-Mc2≤f(b)-Mb2恒成立,求M的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视