AM平面. 查看更多

 

題目列表(包括答案和解析)

精英家教網在平面向量中有如下定理:設點O、P、Q、R為同一平面內的點,則P、Q、R三點共線的充要條件是:存在實數t,使
OP
=(1-t)
OQ
+t
OR
.試利用該定理解答下列問題:
如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

在平面直角坐標系中,已知拋物線y2=2px(p>0),過定點A(p,0)作直線交該拋物線于M、N兩點.
(I)求弦長|MN|的最小值;
(II)是否存在平行于y軸的直線l,使得l被以AM為直徑的圓所截得的弦長為定值?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

精英家教網在平面直角坐標系xOy中,點P(a,b)(a>b>0)為動點,F1,F2分別為橢圓
x2
a2
+
y2
b2
=1
的左、右焦點.已知△F1PF2為等腰三角形.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設直線PF2與橢圓相交于A,B兩點,M是直線PF2上的點,滿足
AM
BM
=-2
,求點M的軌跡方程.

查看答案和解析>>

在平面直角坐標系xOy中,以O為極點,X軸的正半軸為極軸,取與直角坐標系相同的長度單位建立極坐標系.曲線C1的參數方程為:
x=acosφ
y=sinφ
(φ為參數);射線C2的極坐標方程為:θ=
π
4
,且射線C2與曲線C1的交點的橫坐標為
6
3

(I )求曲線C1的普通方程;
(II)設A、B為曲線C1與y軸的兩個交點,M為曲線C1上不同于A、B的任意一點,若直線AM與MB分別與x軸交于P,Q兩點,求證|OP|.|OQ|為定值.

查看答案和解析>>

在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點分別為A,B,離心率為
1
2
,右準線為l:x=4.M為橢圓上不同于A,B的一點,直線AM與直線l交于點P.
(1)求橢圓C的方程;
(2)若
AM
=
MP
,判斷點B是否在以PM為直徑的圓上,并說明理由;
(3)連接PB并延長交橢圓C于點N,若直線MN垂直于x軸,求點M的坐標.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视