題目列表(包括答案和解析)
設點是拋物線
的焦點,
是拋物線
上的
個不同的點(
).
(1) 當時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當時,若
,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則
.”
開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
第三問中①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
解:(1)拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
因為,所以
,
故可取滿足條件.
(2)設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
,
則,
.
故,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設,分別過
作
拋物線的準線
的垂線,垂足分別為
,
由及拋物線的定義得
,即
.
因為上述表達式與點的縱坐標無關,所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
,
而,所以
.
(說明:本質上只需構造滿足條件且的一組
個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標
(
)滿足
”,即:
“當時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設
,
分別過作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得,即
,則
,
又由,所以
,故命題為真.
補充條件2:“點與點
為偶數,
關于
軸對稱”,即:
“當時,若
,且點
與點
為偶數,
關于
軸對稱,則
”.此命題為真.(證略)
已知函數的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數的值;
(Ⅱ)求在區間
上的最大值;
(Ⅲ)對任意給定的正實數,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當時,
,則
。
依題意得:,即
解得
第二問當時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當時,
,令
得
當變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調遞增 |
極大值 |
|
又,
,
。∴
在
上的最大值為2.
②當時,
.當
時,
,
最大值為0;
當時,
在
上單調遞增。∴
在
最大值為
。
綜上,當時,即
時,
在區間
上的最大值為2;
當時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
已知函數f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,
∵g′(x)=-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
已知曲線上動點
到定點
與定直線
的距離之比為常數
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得
.又因為
,所以
,
于是,
,
所以,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且。
由得定義知,
,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com