題目列表(包括答案和解析)
[ ]
已知命題及其證明:
(1)當時,左邊=1,右邊=
所以等式成立;
(2)假設時等式成立,即
成立,
則當時,
,所以
時等式也成立。
由(1)(2)知,對任意的正整數n等式都成立。
經判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
2sinA |
cosA+cos(B-C) |
A | B | C | y值 |
30° | 60° | 90° | |
60° | 90° | 30° | |
90° | 30° | 60° |
2sinA |
cosA+cos(B-C) |
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
為了解高中一年級學生身高情況,某校按10%的比例對全校700名高中一年級學生按性別進行抽樣檢查,測得身高頻數分布表如下表1、表2.
表1:男生身高頻數分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
頻數 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高頻數分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
頻數 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求該校男生的人數并完成下面頻率分布直方圖;
(II)估計該校學生身高在的概率;
(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185
190cm之間的概率。
【解析】第一問樣本中男生人數為40 ,
由分層抽樣比例為10%可得全校男生人數為400
(2)中由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在
的頻率
故由估計該校學生身高在
的概率
(3)中樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185
190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180
190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185
190cm之間的可能結果數為9,因此,所求概率
由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在
的頻率-----------------------------------------6分
故由估計該校學生身高在
的概率
.--------------------8分
(3)樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185
190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖為:
--10分
故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185
190cm之間的可能結果數為9,因此,所求概率
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com