(2)令是數列 查看更多

 

題目列表(包括答案和解析)

數列{an}是以a為首項,q為公比的等比數列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*
(1)試用a、q表示bn和cn;
(2)若a<0,q>0且q≠1,試比較cn與cn+1的大。
(3)是否存在實數對(a,q),其中q≠1,使{cn}成等比數列.若存在,求出實數對(a,q)和{cn};若不存在,請說明理由.

查看答案和解析>>

數列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對任意n∈N*成立,令bn=an+1-an,且{bn}是等比數列.
(1)求實數k的值;   
(2)求數列{an}的通項公式.

查看答案和解析>>

數列{bn}的首項b1=1,前n項和為Sn,點(n,Sn)、(4,10)都在二次函數y=ax2+bx的圖象上,數列{an}滿足
bn
an
=2n
(Ⅰ)求證:數列{bn}是等差數列,并求數列{an}的通項公式;
(Ⅱ)令cn=(1-
1
n+1
1
an
,Rn=
1
c1
+
1
c2
+
1
c3
+…+
1
cn
.試比較Rn
5n
2n+1
的大小,并證明你的結論.

查看答案和解析>>

數列{an}的前n項和為Sn,首項a1=a,且an+1=2Sn+1,n∈N*
(1)若數列{an}是等比數列,求實數a的值;
(2)設bn=nan,在(1)的條件下,求數列{bn}的前n項和Tn;
(3)設各項不為0的數列{cn}中,所有滿足ci•ci+1<0的整數i的個數稱為這個數列{cn}的“積異號數”,令cn=
bn-4bn
(n∈N*)
,在(2)的條件下,求數列{cn}的“積異號數”.

查看答案和解析>>

數列{an}是公差為d(d>0)的等差數列,且a2是a1與a4的等比中項,設Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1
;
(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項和為Tn,是否存在整數P、Q,使得對任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請說明理由.

查看答案和解析>>

一、選擇題:每小題5分,共60分

BCCAB    ACADB    BB

二、填空題:每小題4分,共16分

13.,甲,甲:

三、解答題:本題滿分共74分,解答應有必要的文字說明,解答過程或演算步驟

17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用4’表示)為(2,3),(2,4),(2,4),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12種不同情況--------(4分)

 

(2)甲抽到3,乙抽到的牌只能是2,4,4’,

  因此乙抽到的牌的數字大于3的概率是;------------------------(6分)

 

(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(4’,2),(4’,3)共5種,所以,甲勝的概率是,乙獲勝的與甲獲勝是對立事件,所以乙獲勝的概率是

   此游戲不公平------------------(12分)

18.解:(1)由題意知.

     (5分)

  ,

  -----------------(7分)

 

(2)

-------------------------------------(9分)

---------------(12分)

   19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

www.ks5u.com     (2)連接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,當P點在線段MN上移動時,總有AC⊥EP-----(12分)

 

  20.解:

      -------------------------------(2分)

      (2)

       則

       令--------------------------------(4分)

       當x在區間[-1,2]上變化時,y’,y的變化情況如下表:

     

X

-1

1

(1,2)

2

Y’

 

+

0

-

0

+

 

Y

3/2

單增

極大值

單減

極小值

單增

3

-----------(6分)

(3)證明:

---------------------(12分)

 

 21.解:(1)

   當

   當,適合上式,

   -------------------------------(4分)

   (2),

   ①

, ②

兩式相減,得

=

=

=

--------------------------------(8分)

(3)證明,由

=

成立---------------------------------------------------(12分)

 

22.解:(1)由題意可知直線l的方程為,

因為直線與圓相切,所以=1,既

從而----------------------------------------------------------------------------------------(6分)

(2)設

---------------------------------(8分)

j當

k當

故舍去。

綜上所述,橢圓的方程為------------------------------------(14分)

 

 

 


同步練習冊答案
久久精品免费一区二区视