已知二次函數和一次函數其中且 查看更多

 

題目列表(包括答案和解析)

已知二次函數和一次函數,且滿足,其中

(1)求證:

(2)求證:兩函數的圖象交于不同的兩點A,B;

(3)求線段AB在軸上的射影的長的取值范圍。

查看答案和解析>>

已知二次函數f(x)=ax2+bx+c和一次函數g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當a=3、b=2時函數f(x)與g(x)的圖象交于不同的兩點A,B.
(Ⅱ)若函數F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

已知二次函數f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
74
.g(x)=2x+m.
(Ⅰ)求f(x)的解析式;
(Ⅱ) 求函數h(x)=f(x)-(2t-3)x在區間[0,1]上的最小值,其中t∈R;
(Ⅲ)設f(x)與g(x)是定義在同一區間[p,q]上的兩個函數,若函數F(x)=f(x)-g(x)在x∈[p,q]上有兩個不同的零點,則稱f(x)和g(x)在[p,q]上是“關聯函數”,區間[p,q]稱為“關聯區間”.若f(x)與g(x)在[0,3]上是“關聯函數”,求m的取值范圍.

查看答案和解析>>

已知二次函數f(x)=x2-mx+m(x∈R)同時滿足:(1)不等式f(x)≤0的解集有且只有一個元素;(2)在定義域內存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設數列{an}的前n項和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數i的個數叫做數列{bn}的異號數.根據以上信息,給出下列五個命題:
①m=0;
②m=4;
③數列{an}的通項公式為an=2n-5;
④數列{bn}的異號數為2;
⑤數列{bn}的異號數為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

已知二次函數f(x)=ax2+bx+c和一次函數g(x)=-bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數f(x)與g(x)的圖象交于不同的兩點A,B;
(2)若函數F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值;
(3)求線段AB在x軸上的射影A1B1的長的取值范圍.

查看答案和解析>>

一、選擇題:(本題每小題5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空題:(本題每小題4分,共16分)

11.      12.     13.    14.

三、解答題(本大題6小題,共84分。解答應寫出文字說明,證明過程或演算步驟)

15.(本小題滿分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小題滿分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,,則

…………………10分

…14分

 

 

17.(本小題滿分14分)

解:                            (…………………3分)

=(…………………7分)

,,

(1)若,即時,==,(…………10分)

(2)若,即時,

所以當時,=(…………………13分)

(…………………14分)

18.(本小題滿分14分)

解:(1)令,即

 由

  ∵,∴,即數列是以為首項、為公差的等差數列, ∴  …………8分

(2)化簡得,即

 ∵,又∵時,…………12分

 ∴各項中最大項的值為…………14分

19.(本小題滿分14分)

解:(1),由題意―――①

       又―――②

       聯立得                       …………5分

(2)依題意得   即 ,對恒成立,設,則

      解

      當   ……10分

      則

      又,所以;故只須   …………12分

      解得

      即的取值范圍是       …………14分

20.(本小題滿分14分)

解:(1)由,

    即函數的圖象交于不同的兩點A,B;                                               ……4分(2)

已知函數的對稱軸為,

在[2,3]上為增函數,                          ……………6分

                      ……8分

(3)設方程

                                 ……10分

                                ……12分

的對稱軸為上是減函數,      ……14分

 


同步練習冊答案
久久精品免费一区二区视