題目列表(包括答案和解析)
橢圓的左、右焦點分別為
,一條直線
經過點
與橢圓交于
兩點.
⑴求的周長;
⑵若的傾斜角為
,求
的面積.
【解析】(1)根據橢圓的定義的周長等于4a.
(2)設,則
,然后直線l的方程與橢圓方程聯立,消去x,利用韋達定理可求出所求三角形的面積.
設雙曲線的兩個焦點分別為
、
,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點能否作出直線
,使
與雙曲線
交于
、
兩點,且
,若存在,求出直線方程,若不存在,說明理由.
【解析】(1)根據離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.
(2)設直線l的方程為,然后直線方程與雙曲線方程聯立,消去y,得到關于x的一元二次方程,利用韋達定理
表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.
如圖,直線與拋物線
交于
兩點,與
軸相交于點
,且
.
(1)求證:點的坐標為
;
(2)求證:;
(3)求的面積的最小值.
【解析】設出點M的坐標,并把過點M的方程設出來.為避免對斜率不存在的情況進行討論,可以設其方程為
,然后與拋物線方程聯立消x,根據
,即可建立關于
的方程.求出
的值.
(2)在第(1)問的基礎上,證明:即可.
(3)先建立面積S關于m的函數關系式,根據建立即可,然后再考慮利用函數求最值的方法求最值.
已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y軸距離的差都是1
(1) 求曲線C的方程.
(2) 是否存在正數m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
【解析】(1)由題意知曲線C上的點到F(1,0)的距離與到直線x=-1的距離相等.
可確定其軌跡是拋物線,即可求出其方程為y2=4x.
(2)設過點M的直線方程為x=ty+m,然后與拋物線方程聯立,消去x,利用韋達定理表示出,再證明其小于零即可.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com