題目列表(包括答案和解析)
若二次函數y=f(x)的圖象經過原點,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.
分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數,所以應先將f(x)的表達形式寫出來.即可求得f(-2)的表達式,然后依題設條件列出含有f(-2)的不等式(組),即可求解.
已知,函數
(1)當時,求函數
在點(1,
)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區間
上為增函數,則
依題意,只需,即
解得 或
(舍去)
則正實數的取值范圍是(
,
)
現有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率;
(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數,記,求隨機變量
的分布列與數學期望
.
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為
.
設“這4個人中恰有i人去參加甲游戲”為事件
則.
(1)這4個人中恰有2人去參加甲游戲的概率
(2)設“這4個人中去參加甲游戲的人數大于去參加乙游戲的人數”為事件B,則.由于
互斥,故
所以,這個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率為.
(3)的所有可能取值為0,2,4.由于
互斥,
互斥,故
所以的分布列是
|
0 |
2 |
4 |
P |
|
|
|
隨機變量的數學期望
.
一自來水廠用蓄水池通過管道向所管轄區域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區域供水
千噸.
(1)多少小時后,蓄水池存水量最少?
(2)當蓄水池存水量少于3千噸時,供水就會出現緊張現象,那么當日出現這種情況的時間有多長?
【解析】第一問中(1)設小時后,蓄水池有水
千噸.依題意,
當
,即
(小時)時,蓄水池的水量最少,只有1千噸
第二問依題意, 解得:
解:(1)設小時后,蓄水池有水
千噸.………………………………………1分
依題意,…………………………………………4分
當,即
(小時)時,蓄水池的水量最少,只有1千噸. ………2分
(2)依題意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,當天有8小時會出現供水緊張的情況
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com