題目列表(包括答案和解析)
已知函數,
.
(Ⅰ)若函數依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數,使對任意的
,不等式
恒成立.求正整數
的最大值.
【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。
第二問中,利用存在實數,使對任意的
,不等式
恒成立轉化為
,恒成立,分離參數法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉化為存在實數,使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設,則.
設,則
,因為
,有
.
故在區間
上是減函數。又
故存在,使得
.
當時,有
,當
時,有
.
從而在區間
上遞增,在區間
上遞減.
又[來源:]
所以當時,恒有
;當
時,恒有
;
故使命題成立的正整數m的最大值為5
根據已知條件求曲線方程的一般步驟:
(1)________:________坐標系中,用有序實數對(x,y)表示所求曲線上________M的坐標;
(2)________:尋找并寫出適合題意條件p的________的集合________;
(3)________:________,列出方程f(x,y)=0;
(4)________:化方程f(x,y)=0為最簡式;
(5)________:證明以化簡后的方程的解為坐標的點________.
一般情況下,當化簡前后方程的解是________,步驟(5)可以省略不寫,若有特殊情況如增根、失根時,可適當予以說明.另外,根據情況,也可省略________,直接列出________.
某廠在一個空間容積為2000m3的密封車間內生產某種化學藥品.開始生產后,每滿60分鐘會一次性釋放出有害氣體am3,并迅速擴散到空氣中.每次釋放有害氣體后,車間內的凈化設備隨即自動工作20分鐘,將有害氣體的含量降至該車間內原有有害氣體含量的r%,然后停止工作,待下一次有害氣體釋放后再繼續工作.安全生產條例規定:只有當車間內的有害氣體總量不超過1.25am3時才能正常進行生產.
(Ⅰ)當r=20時,該車間能否連續正常生產6.5小時?請說明理由;
(Ⅱ)能否找到一個大于20的數據r,使該車間能連續正常生產6.5小時?請說明理由;
(Ⅲ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)
已知該凈化設備的工作方式是:在向外釋放出室內混合氣體(空氣和有害氣體)的同時向室內放入等體積的新鮮空氣.已知該凈化設備的換氣量是200m3/分,試證明該設備連續工作20分鐘能夠將有害氣體含量降至原有有害氣體含量的20%以下.(提示:我們可以將凈化過程劃分成n次,且n趨向于無窮大.)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com