(Ⅰ)若在處的切線與直線垂直.求的值. 查看更多

 

題目列表(包括答案和解析)

已知函數

(1)若處的切線與直線垂直,求的值

(2)證明:對于任意的,都存在,使得成立

查看答案和解析>>

已知函數
(1)若處的切線與直線垂直,求的值
(2)證明:對于任意的,都存在,使得成立

查看答案和解析>>

已知函數
(1)若處的切線與直線垂直,求的單調區間;
(2)求在區間上的最大值.

查看答案和解析>>

已知函數

(1)設曲線處的切線與直線垂直,求的值

(2)若對任意實數恒成立,確定實數的取值范圍

(3)當時,是否存在實數,使曲線C:在點處的切線與軸垂直?若存在,求出的值,若不存在,說明理由

查看答案和解析>>

已知函數

(1)設曲線處的切線與直線垂直,求的值;

(2)若對任意實數恒成立,確定實數的取值范圍;

(3)當時,是否存在實數,使曲線C:在點處的切線與軸垂直?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有,

.…………………………5分

,得

∴函數的單調增區間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設數列的公比為,由,.             …………………………………………………………… 4分

∴數列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

    

∴當的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯立得:,設6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得,

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,,

得:……………………………………………… 7分

(1)當時,,在,即上單調遞增,此時.

          …………………………………………………………… 10分

(2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

高考資源網( www.ks5u.com),中國最大的高考網站,您身邊的高考專家。

 


同步練習冊答案
久久精品免费一区二区视