題目列表(包括答案和解析)
(本小題滿分8分)
如圖,在梯形ABCD中,DC∥AB,AD=BC, BD平分∠ABC,∠A=60°,過點D作DE⊥AB,過點C作CF⊥BD,垂足分別為E、F,連接EF,求證:△DEF為等邊三角形。
(本小題滿分8分)
如圖,在梯形ABCD中,DC∥AB,AD=BC, BD平分∠ABC,∠A=60°,過點D作DE⊥AB,過點C作CF⊥BD,垂足分別為E、F,連接EF,求證:△DEF為等邊三角形。
(本小題滿分12分)
如圖,在平面直角坐標系中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知
,
,△ABC的面積
,拋物線
經過A、B、C三點。
1.(1)求此拋物線的函數表達式;
2.(2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
3.(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為?若存在,求出點M的坐標;若不存在,請說明理由.
一、填空題:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
7.2-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
14.
15. (-8,0)。
16.6。
17. .平行四邊形。
18.60
19.4,12
二、選擇題:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答題:
1.(1)如圖答2,因為AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分
分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.
則BE = CF.-------------------------------------------------------------------------------------------- 4分
因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 當∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分
② 當AC為矩形紙片的對角線時,設AB = x,如圖答3,在Rt△BCG中,
,
.所以周長最大值為17.-------------------------------------------9分
2.證明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
證得:△AOE≌△COF-----------------------------------------------------------3′
證得:四邊形AECF是平行四邊形------------------------------------------------5′
由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′
5.(本題滿分8分)
解:(1)方法一:如圖①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分別平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF.
…………………………4分
![]() |
|||
|