(1)求動點的軌跡E的方程, 查看更多

 

題目列表(包括答案和解析)

已知定點A(1,0),B(-1,0),C(0,1),D(0,2),動點P滿足:
AP
BP
=k|
PC
|
2

(1)求動點P軌跡M的方程,并說明方程表示的曲線類型;
(2)當k=2時:
①E是x軸上的動點,EK,EQ分別切曲線M于K,Q兩點,如果|KQ|=
4
5
5
,求線段KQ的垂直平分線方程;
②若E點在△ABC邊上運動,EK,EQ分別切曲線M于K,Q兩點,求四邊形DKEQ的面積的取值范圍.

查看答案和解析>>

(2012•邯鄲一模)在平面直角坐標系中,點P(x,y)為動點,已知點A(
2
,0)
B(-
2
,0)
,直線PA與PB的斜率之積為-
1
2

(I)求動點P軌跡E的方程;
( II)過點F(1,0)的直線l交曲線E于M,N兩點,設點N關于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過定點.

查看答案和解析>>

在平面直角坐標系中,若,且,

(1)求動點的軌跡的方程;

(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數的值。

查看答案和解析>>

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

已知、分別是直線上的兩個動點,線段的長為,的中點.

(1)求動點的軌跡的方程;

(2)過點任意作直線(與軸不垂直),設與(1)中軌跡交于兩點,與軸交于點.若,證明:為定值.

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

20090508

(2)設,則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費總額為1500元的概率是:………………………5分

消費總額為1400元的概率是:………6分

消費總額為1300元的概率是:

,

所以消費總額大于或等于1300元的概率是;……………………8分

(3),

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數學期望是:!12分

19.(1)證明:因為,所以平面,

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面,

所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,

所以平面

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,=1,

到平面的距離等于1;…………………………8分

       (3)連接,由平面,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設等差數列的公差為,依題意得:

      

       解得,所以,…………………3分

       所以

       ,

       所以;…………………………………………………………………6分

       (2),因為,

       所以數列是遞增數列,…8分

       當且僅當時,取得最小值,則:,

       所以,即的取值范圍是!12分

21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

因為,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為

 

……………………………………………………7分

弦長為定值,則,即,

此時……………………………………………………9分

所以當時,存在直線,截得的弦長為,

   當時,不存在滿足條件的直線!12分

22.解:(1)設,因為 上的增函數,且,所以上的增函數,

所以,得到;所以的取值范圍為………4分

(2)由條件得到,

猜測最大整數,……6分

現在證明對任意恒成立,

等價于

,

時,,當時,

所以對任意的都有,

對任意恒成立,

所以整數的最大值為2;……………………………………………………9分

(3)由(2)得到不等式,

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習冊答案
久久精品免费一区二区视