(2)若點是(1)中軌跡E上的動點.點是定點.是否存在垂直軸的直線.使得直線被以線段為直徑的圓截得的弦長恒為定值?若存在.用表示直線的方程,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

查看答案和解析>>

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時.求證:kPM•kPN是與點P位置無關的定值.

查看答案和解析>>

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值.試對雙曲線
x2
a2
-
y2
b2
=1
寫出具有類似特性的性質,并加以證明.

查看答案和解析>>

F1、F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

查看答案和解析>>

設F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

20090508

(2)設,則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費總額為1500元的概率是:………………………5分

消費總額為1400元的概率是:………6分

消費總額為1300元的概率是:

,

所以消費總額大于或等于1300元的概率是;……………………8分

(3)

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數學期望是:。…………12分

19.(1)證明:因為,所以平面,

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面,

所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,

所以平面,

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,,=1,

到平面的距離等于1;…………………………8分

       (3)連接,由平面,,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設等差數列的公差為,依題意得:

       ,

       解得,所以,…………………3分

       所以

       ,

       所以;…………………………………………………………………6分

       (2),因為,

       所以數列是遞增數列,…8分

       當且僅當時,取得最小值,則:,

       所以,即的取值范圍是!12分

21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

因為,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為,

 

……………………………………………………7分

弦長為定值,則,即,

此時……………………………………………………9分

所以當時,存在直線,截得的弦長為,

   當時,不存在滿足條件的直線!12分

22.解:(1)設,因為 上的增函數,且,所以上的增函數,

所以,得到;所以的取值范圍為………4分

(2)由條件得到,

猜測最大整數,……6分

現在證明對任意恒成立,

等價于,

,

時,,當時,,

所以對任意的都有,

對任意恒成立,

所以整數的最大值為2;……………………………………………………9分

(3)由(2)得到不等式,

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習冊答案
久久精品免费一区二区视