(1), (2)反向, 查看更多

 

題目列表(包括答案和解析)

多向飛碟是奧運會的競賽項目,它是由拋靶機把碟靶(射擊的目標)在一定范圍內從不同的方向飛出,每拋出一個碟靶,就允許運動員射擊兩次,直到擊中為止.一運動員在進行訓練時,每一次射擊命中碟靶的概率P與運動員離碟靶的距離S(米)成反比,現有一碟靶拋出的距離S(米)與飛行時間t(秒)滿足S=15(t+1),(0≤t≤4).假設運動員在碟靶飛出后0.5秒進行第一次射擊,且命中的概率為0.8,如果他發現沒有命中,則通過迅速調整,在第一次射擊后經過0.5秒進行第二次射擊.
理科:(1)設該運動員命中碟靶的次數為ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求該運動員命中碟靶的概率.

查看答案和解析>>

多向飛碟是奧運會的競賽項目,它是由拋靶機把碟靶(射擊的目標)在一定范圍內從不同的方向飛出,每拋出一個碟靶,就允許運動員射擊兩次,直到擊中為止.一運動員在進行訓練時,每一次射擊命中碟靶的概率P與運動員離碟靶的距離S(米)成反比,現有一碟靶拋出的距離S(米)與飛行時間t(秒)滿足S=15(t+1),(0≤t≤4).假設運動員在碟靶飛出后0.5秒進行第一次射擊,且命中的概率為0.8,如果他發現沒有命中,則通過迅速調整,在第一次射擊后經過0.5秒進行第二次射擊.
理科:(1)設該運動員命中碟靶的次數為ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求該運動員命中碟靶的概率.

查看答案和解析>>

多向飛碟是奧運會的競賽項目,它是由拋靶機把碟靶(射擊的目標)在一定范圍內從不同的方向飛出,每拋出一個碟靶,就允許運動員射擊兩次,直到擊中為止.一運動員在進行訓練時,每一次射擊命中碟靶的概率P與運動員離碟靶的距離S(米)成反比,現有一碟靶拋出的距離S(米)與飛行時間t(秒)滿足S=15(t+1),(0≤t≤4).假設運動員在碟靶飛出后0.5秒進行第一次射擊,且命中的概率為0.8,如果他發現沒有命中,則通過迅速調整,在第一次射擊后經過0.5秒進行第二次射擊.
理科:(1)設該運動員命中碟靶的次數為ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求該運動員命中碟靶的概率.

查看答案和解析>>

煙囪向其周圍地區散落煙塵而造成環境污染.已知A、B兩座煙囪相距3km,其中A煙囪噴出的煙塵量是B煙囪的8倍,經環境檢測表明:落在地面某處的煙塵濃度與該處到煙囪距離的平方成反比,而與煙囪噴出的煙塵量成正比.(比例系數為k).若C是連接兩煙囪的線段AB上的點(不包括端點),設AC=xkm,C點的煙塵濃度記為y.
(Ⅰ)寫出y關于x的函數表達式;
(Ⅱ)是否存在這樣的點C,使該點的煙塵濃度最低?若存在,求出AC的距離;若不存在,說明理由.

查看答案和解析>>

已知向量
a
=(4,3),
b
=(-1,2).
(1)求
a
b
的夾角θ(用反余弦的符號表示);
(2)若
a
b
與2
a
+
b
垂直,求實數λ的值.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空題(每題4分,共16分)

13、          14、        15、1     16、15

三、解答題(共74分)

17、(本小題滿分12分)

(1)

函數的最小正周期是

時,即時,函數有最大值1。

(2)由,得

時,取得,函數的單調遞減區間是

(3)

18、(本小題滿分12分)

(1)由題意知:,∴=1

①,∴當 n≥2時,

①-②得:

>0,∴,(n≥2且

是以=1為首項,d=1為公差的等差數列

=n

(2)

是以為首項,為公比的等比數列

,∴,

                        ①

           ②

①-②得

19、(本小題滿分12分)

(1)當時,

上是增函數

上是增函數

∴當時,

(2)上恒成立

上恒成立

上恒成立

上是減函數,

∴當時,

∴所求實數a的取值范圍為

20、(本小題滿分12分)

此時

,∴,∴

∴實數a不存在

21、(本小題滿分12分)

(1)若方程表示圓,則,∴

(2)設M、N的坐標分別為、

,得

,∴,∴    ①

,得

代入①得,

(3)設MN為直徑的圓的方程為,

∴所求圓的方程為

22、(本小題滿分14分)

(1)當時,

設x為其不動點,則,即

或2,即的不動點是-1,2

(2)由

由題意知,此方程恒有兩個相異的實根

對任意的恒成立

,∴

(3)設,則直線AB的斜率,∴

由(2)知AB中點M的坐標為

又∵M在線段AB的垂直平分線上,∴

(當且僅當時取等號)

∴實數b的取值范圍為

 

 


同步練習冊答案
久久精品免费一区二区视