(1)求的通項公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數列的通項公式;
⑵設,若恒成立,求實數的取值范圍;
⑶是否存在以為首項,公比為的數列,,使得數列中每一項都是數列中不同的項,若存在,求出所有滿足條件的數列的通項公式;若不存在,說明理由

查看答案和解析>>

數列的通項公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結果推測出計算f(n)的公式,并用數學歸納法加以證明.

查看答案和解析>>

求通項公式:

(1)的各項均為正數,且滿足關系,;求

(2)中,,求

(3),數列n2時滿足

,,求

查看答案和解析>>

求通項公式:

(1)的各項均為正數,且滿足關系;求

(2)中,,,求

(3)設,數列在n≥2時滿足

,,求

查看答案和解析>>

數列{an}的通項公式為an=
1
(n+1)2
(n∈N*),設f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達式;
(3)數列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項和為g(n),求證:當n∈N*時,g(2n)-
n
2
≥1.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空題(每題4分,共16分)

13、          14、        15、1     16、15

三、解答題(共74分)

17、(本小題滿分12分)

(1)

函數的最小正周期是

時,即時,函數有最大值1。

(2)由,得

時,取得,函數的單調遞減區間是

(3)

18、(本小題滿分12分)

(1)由題意知:,∴=1

①,∴當 n≥2時,

①-②得:

>0,∴,(n≥2且

是以=1為首項,d=1為公差的等差數列

=n

(2)

是以為首項,為公比的等比數列

,∴,

                        ①

           ②

①-②得

19、(本小題滿分12分)

(1)當時,

上是增函數

上是增函數

∴當時,

(2)上恒成立

上恒成立

上恒成立

上是減函數,

∴當時,

,

∴所求實數a的取值范圍為

20、(本小題滿分12分)

此時

,∴,∴

∴實數a不存在

21、(本小題滿分12分)

(1)若方程表示圓,則,∴

(2)設M、N的坐標分別為、

,得

,∴,∴    ①

,得

代入①得

(3)設MN為直徑的圓的方程為,

∴所求圓的方程為

22、(本小題滿分14分)

(1)當時,

設x為其不動點,則,即

或2,即的不動點是-1,2

(2)由

由題意知,此方程恒有兩個相異的實根

對任意的恒成立

,∴

(3)設,則直線AB的斜率,∴

由(2)知AB中點M的坐標為

又∵M在線段AB的垂直平分線上,∴

(當且僅當時取等號)

∴實數b的取值范圍為

 

 


同步練習冊答案
久久精品免费一区二区视