于是可設直線的方程為.點.的坐標分別為., 查看更多

 

題目列表(包括答案和解析)

已知點,動點N(x,y),設直線NP,NQ的斜率分別記為k1,k2,記(其中“?”可以是四則運算加、減、乘、除中的任意一種運算),坐標原點為O,點M(2,1).
(Ⅰ)探求動點N的軌跡方程;
(Ⅱ)若“?”表示乘法,動點N的軌跡再加上P,Q兩點記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個不同的點.
(。┤粼cO在以AB為直徑的圓的內部,試求出直線l在y軸上的截距m的取值范圍.
(ⅱ)試求出△AOB面積的最大值及此時直線l的方程.

查看答案和解析>>

已知過點的動直線與拋物線相交于兩點.當直線的斜率是時,

(1)求拋物線的方程;

(2)設線段的中垂線在軸上的截距為,求的取值范圍.

【解析】(1)B,C,當直線的斜率是時,

的方程為,即                                (1’)

聯立  得         (3’)

由已知  ,                    (4’)

由韋達定理可得G方程為            (5’)

(2)設,BC中點坐標為               (6’)

 由       (8’)

    

BC中垂線為             (10’)

                  (11’)

 

查看答案和解析>>

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區間[0,2π]內的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設函數f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數m的最大值;
(3)根據本題條件我們可以知道,函數f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數f(x)滿足“圖象關于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設
(1)若,b=1,ω=2,求方程f(x)=1在區間[0,2π]內的解集;
(2)若點A是過點(-1,1)且法向量為的直線l上的動點.當x∈R時,設函數f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數m的最大值;
(3)根據本題條件我們可以知道,函數f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數f(x)滿足“圖象關于點對稱,且在處f(x)取得最小值”.

查看答案和解析>>

(本小題滿分14分)在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(I)若,,求方程在區間內的解集;

(II)若點是曲線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(III)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.【說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.】

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视