題目列表(包括答案和解析)
歐拉(Euler),瑞士數學家及自然科學家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時入讀巴塞爾大學,15歲大學畢業,16歲獲碩士學位.
歐拉是18世紀數學界最杰出的人物之一,他不但為數學界做出了巨大的貢獻,更把數學推至幾乎整個物理的領域.他是數學史上最多產的數學家,平均每年寫出八百多頁的論文,還寫了大量的力學、分析學、幾何學、變分法等的課本,《無窮小分析引論》、《微分學原理》、《積分學原理》等都成為數學中的經典著作.
歐拉對數學符號的創立及推廣起了積極的作用.比如用e表示自然對數的底,用i表示-1,用f(x)作為函數的符號,π雖不是歐拉首先提出的,但是在歐拉倡導下推廣普及的.尤為不可思議的是歐拉將數學中最為活躍的五個數1,0,π,e,i竟用一個美妙絕倫的公式聯系了起來:eiπ+1=0(歐拉指數公式),在西方數學界甚至認為此公式不亞于神的力量.
歐拉對數學的研究如此廣泛,因此在許多數學的分支中也可經常見到以他的名字命名的重要常數、公式和定理.
1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時入讀巴塞爾大學,15歲大學畢業,16歲獲碩士學位”,你有何感觸?
2.作為新時代的青年,你做好將來為科學事業做貢獻的思想準備了嗎?
試回答:(其中第(1)&(5)小題只需直接給出最后的結果,無需求解過程)
(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個數為aij,則數列{aij}的通項公式為 ,
n階楊輝三角中共有 個數;
(2)第k行各數的和是;
(3)n階楊輝三角的所有數的和是;
(4)將第n行的所有數按從左到右的順序合并在一起得到的多位數等于;
(5)第p(p∈N*,且p≥2)行除去兩端的數字1以外的所有數都能被p整除,則整數p一定為( )
A.奇數 B.質數 C.非偶數 D.合數
(6)在第3斜列中,前5個數依次為1、3、6、10、15;第4斜列中,第5個數為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:
第m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數.
試用含有m、k(m、k∈N*)的數學公式表示上述結論并證明其正確性.
數學公式為 .
證明: .
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發展的背景.
“function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.
萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.
當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態度.函數的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節學習的函數概念.
綜上所述可知,函數概念的發展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.
你能以函數概念的發展為背景,談談從初中到高中學習函數概念的體會嗎?
1.探尋科學家發現問題的過程,對指導我們的學習有什么現實意義?
2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com